MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrn Structured version   Visualization version   GIF version

Theorem ralrn 6848
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralrn (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦𝐴 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralrn
StepHypRef Expression
1 fvexd 6679 . 2 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
2 fvelrnb 6720 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝑥))
3 eqcom 2828 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
43rexbii 3247 . . 3 (∃𝑦𝐴 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦))
52, 4syl6bb 289 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦)))
6 rexrn.1 . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
76adantl 484 . 2 ((𝐹 Fn 𝐴𝑥 = (𝐹𝑦)) → (𝜑𝜓))
81, 5, 7ralxfr2d 5302 1 (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  ran crn 5550   Fn wfn 6344  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by:  ralrnmptw  6854  ralrnmpt  6856  cbvfo  7039  isoselem  7088  indexfi  8826  ordtypelem9  8984  ordtypelem10  8985  wemapwe  9154  numacn  9469  acndom  9471  rpnnen1lem3  12372  fsequb2  13338  limsuple  14829  limsupval2  14831  climsup  15020  ruclem11  15587  ruclem12  15588  prmreclem6  16251  imasaddfnlem  16795  imasvscafn  16804  cycsubgcl  18343  ghmrn  18365  ghmnsgima  18376  pgpssslw  18733  gexex  18967  dprdfcntz  19131  znf1o  20692  frlmlbs  20935  lindfrn  20959  ptcnplem  22223  kqt0lem  22338  isr0  22339  regr1lem2  22342  uzrest  22499  tmdgsum2  22698  imasf1oxmet  22979  imasf1omet  22980  bndth  23556  evth  23557  ovolficcss  24064  ovollb2lem  24083  ovolunlem1  24092  ovoliunlem1  24097  ovoliunlem2  24098  ovoliun2  24101  ovolscalem1  24108  ovolicc1  24111  voliunlem2  24146  voliunlem3  24147  ioombl1lem4  24156  uniioovol  24174  uniioombllem2  24178  uniioombllem3  24180  uniioombllem6  24183  volsup2  24200  vitalilem3  24205  mbfsup  24259  mbfinf  24260  mbflimsup  24261  itg1ge0  24281  itg1mulc  24299  itg1climres  24309  mbfi1fseqlem4  24313  itg2seq  24337  itg2monolem1  24345  itg2mono  24348  itg2i1fseq2  24351  itg2gt0  24355  itg2cnlem1  24356  itg2cn  24358  limciun  24486  plycpn  24872  hmopidmchi  29922  hmopidmpji  29923  rge0scvg  31187  mclsax  32811  mblfinlem2  34924  ismtyhmeolem  35076  nacsfix  39302  fnwe2lem2  39644  gneispace  40477  climinf  41880  liminfval2  42042
  Copyright terms: Public domain W3C validator