Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsnsg Structured version   Visualization version   GIF version

Theorem ralsnsg 4187
 Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsnsg (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsnsg
StepHypRef Expression
1 sbc6g 3443 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2 df-ral 2912 . . 3 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑))
3 velsn 4164 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
43imbi1i 339 . . . 4 ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴𝜑))
54albii 1744 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
62, 5bitri 264 . 2 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
71, 6syl6rbbr 279 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1478   = wceq 1480   ∈ wcel 1987  ∀wral 2907  [wsbc 3417  {csn 4148 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-v 3188  df-sbc 3418  df-sn 4149 This theorem is referenced by:  ralsng  4189  ixpsnval  7855  ac6sfi  8148  rexfiuz  14021  prmind2  15322  finixpnum  33026
 Copyright terms: Public domain W3C validator