![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralss | Structured version Visualization version GIF version |
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
ralss | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3630 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | pm4.71rd 668 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
3 | 2 | imbi1d 330 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑))) |
4 | impexp 461 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
5 | 3, 4 | syl6bb 276 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)))) |
6 | 5 | ralbidv2 3013 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-in 3614 df-ss 3621 |
This theorem is referenced by: acsfn 16367 acsfn1 16369 acsfn2 16371 mdetunilem9 20474 acsfn1p 38086 ntrneik3 38711 ntrneix3 38712 ntrneik13 38713 ntrneix13 38714 |
Copyright terms: Public domain | W3C validator |