MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Visualization version   GIF version

Theorem ram0 15773
Description: The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)

Proof of Theorem ram0
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 id 22 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
3 0ex 4823 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅ ∈ V)
5 f0 6124 . . . 4 ∅:∅⟶ℕ0
65a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅:∅⟶ℕ0)
7 f00 6125 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ ↔ (𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅))
8 vex 3234 . . . . . . . . . 10 𝑠 ∈ V
9 simpl 472 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → 𝑀 ∈ ℕ0)
101hashbcval 15753 . . . . . . . . . 10 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀})
118, 9, 10sylancr 696 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀})
12 hashfz1 13174 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
1312breq1d 4695 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ 𝑀 ≤ (#‘𝑠)))
1413biimpar 501 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (#‘(1...𝑀)) ≤ (#‘𝑠))
15 fzfid 12812 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (1...𝑀) ∈ Fin)
16 hashdom 13206 . . . . . . . . . . . . . . 15 (((1...𝑀) ∈ Fin ∧ 𝑠 ∈ V) → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1715, 8, 16sylancl 695 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1814, 17mpbid 222 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (1...𝑀) ≼ 𝑠)
198domen 8010 . . . . . . . . . . . . 13 ((1...𝑀) ≼ 𝑠 ↔ ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
2018, 19sylib 208 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
21 simprr 811 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥𝑠)
22 selpw 4198 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
2321, 22sylibr 224 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥 ∈ 𝒫 𝑠)
24 hasheni 13176 . . . . . . . . . . . . . . . . 17 ((1...𝑀) ≈ 𝑥 → (#‘(1...𝑀)) = (#‘𝑥))
2524ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘(1...𝑀)) = (#‘𝑥))
2612ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘(1...𝑀)) = 𝑀)
2725, 26eqtr3d 2687 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘𝑥) = 𝑀)
2823, 27jca 553 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
2928ex 449 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (((1...𝑀) ≈ 𝑥𝑥𝑠) → (𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀)))
3029eximdv 1886 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀)))
3120, 30mpd 15 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
32 df-rex 2947 . . . . . . . . . . 11 (∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
3331, 32sylibr 224 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀)
34 rabn0 3991 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀)
3533, 34sylibr 224 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀} ≠ ∅)
3611, 35eqnetrd 2890 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ≠ ∅)
3736neneqd 2828 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ¬ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
3837pm2.21d 118 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
3938adantld 482 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
407, 39syl5bi 232 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4140impr 648 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑀 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅)) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
421, 2, 4, 6, 2, 41ramub 15764 . 2 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ≤ 𝑀)
43 nnnn0 11337 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
443a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅ ∈ V)
455a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅:∅⟶ℕ0)
46 nnm1nn0 11372 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
47 f0 6124 . . . . . . 7 ∅:∅⟶∅
48 fzfid 12812 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (1...(𝑀 − 1)) ∈ Fin)
491hashbc2 15757 . . . . . . . . . . 11 (((1...(𝑀 − 1)) ∈ Fin ∧ 𝑀 ∈ ℕ0) → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = ((#‘(1...(𝑀 − 1)))C𝑀))
5048, 43, 49syl2anc 694 . . . . . . . . . 10 (𝑀 ∈ ℕ → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = ((#‘(1...(𝑀 − 1)))C𝑀))
51 hashfz1 13174 . . . . . . . . . . . 12 ((𝑀 − 1) ∈ ℕ0 → (#‘(1...(𝑀 − 1))) = (𝑀 − 1))
5246, 51syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (#‘(1...(𝑀 − 1))) = (𝑀 − 1))
5352oveq1d 6705 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((#‘(1...(𝑀 − 1)))C𝑀) = ((𝑀 − 1)C𝑀))
54 nnz 11437 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
55 nnre 11065 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5655ltm1d 10994 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
5756olcd 407 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀))
58 bcval4 13134 . . . . . . . . . . 11 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1)C𝑀) = 0)
5946, 54, 57, 58syl3anc 1366 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑀 − 1)C𝑀) = 0)
6050, 53, 593eqtrd 2689 . . . . . . . . 9 (𝑀 ∈ ℕ → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0)
61 ovex 6718 . . . . . . . . . 10 ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ∈ V
62 hasheq0 13192 . . . . . . . . . 10 (((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ∈ V → ((#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅))
6361, 62ax-mp 5 . . . . . . . . 9 ((#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
6460, 63sylib 208 . . . . . . . 8 (𝑀 ∈ ℕ → ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
6564feq2d 6069 . . . . . . 7 (𝑀 ∈ ℕ → (∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ ↔ ∅:∅⟶∅))
6647, 65mpbiri 248 . . . . . 6 (𝑀 ∈ ℕ → ∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅)
67 noel 3952 . . . . . . . 8 ¬ 𝑐 ∈ ∅
6867pm2.21i 116 . . . . . . 7 (𝑐 ∈ ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (#‘𝑥) < (∅‘𝑐)))
6968ad2antrl 764 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑐 ∈ ∅ ∧ 𝑥 ⊆ (1...(𝑀 − 1)))) → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (#‘𝑥) < (∅‘𝑐)))
701, 43, 44, 45, 46, 66, 69ramlb 15770 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) < (𝑀 Ramsey ∅))
71 ramubcl 15769 . . . . . . . 8 (((𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅:∅⟶ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ≤ 𝑀)) → (𝑀 Ramsey ∅) ∈ ℕ0)
722, 4, 6, 2, 42, 71syl32anc 1374 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℕ0)
7343, 72syl 17 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 Ramsey ∅) ∈ ℕ0)
74 nn0lem1lt 11480 . . . . . 6 ((𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ∈ ℕ0) → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7543, 73, 74syl2anc 694 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7670, 75mpbird 247 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅))
7776a1i 11 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅)))
7872nn0ge0d 11392 . . . 4 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀 Ramsey ∅))
79 breq1 4688 . . . 4 (𝑀 = 0 → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ 0 ≤ (𝑀 Ramsey ∅)))
8078, 79syl5ibrcom 237 . . 3 (𝑀 ∈ ℕ0 → (𝑀 = 0 → 𝑀 ≤ (𝑀 Ramsey ∅)))
81 elnn0 11332 . . . 4 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8281biimpi 206 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8377, 80, 82mpjaod 395 . 2 (𝑀 ∈ ℕ0𝑀 ≤ (𝑀 Ramsey ∅))
8472nn0red 11390 . . 3 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℝ)
85 nn0re 11339 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8684, 85letri3d 10217 . 2 (𝑀 ∈ ℕ0 → ((𝑀 Ramsey ∅) = 𝑀 ↔ ((𝑀 Ramsey ∅) ≤ 𝑀𝑀 ≤ (𝑀 Ramsey ∅))))
8742, 83, 86mpbir2and 977 1 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  ccnv 5142  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cen 7994  cdom 7995  Fincfn 7997  0cc0 9974  1c1 9975   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  Ccbc 13129  #chash 13157   Ramsey cram 15750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130  df-hash 13158  df-ram 15752
This theorem is referenced by:  0ramcl  15774  ramcl  15780
  Copyright terms: Public domain W3C validator