MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rami Structured version   Visualization version   GIF version

Theorem rami 16339
Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
rami.x (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
rami.s (𝜑𝑆𝑊)
rami.l (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
rami.g (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
Assertion
Ref Expression
rami (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐺,𝑐,𝑥   𝜑,𝑐,𝑥   𝑆,𝑐,𝑥   𝐹,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)   𝑊(𝑥,𝑖,𝑎,𝑏,𝑐)

Proof of Theorem rami
Dummy variables 𝑓 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5737 . . . . . 6 (𝑓 = 𝐺𝑓 = 𝐺)
21imaeq1d 5921 . . . . 5 (𝑓 = 𝐺 → (𝑓 “ {𝑐}) = (𝐺 “ {𝑐}))
32sseq2d 3996 . . . 4 (𝑓 = 𝐺 → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
43anbi2d 628 . . 3 (𝑓 = 𝐺 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
542rexbidv 3297 . 2 (𝑓 = 𝐺 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}))))
6 rami.s . . 3 (𝜑𝑆𝑊)
7 rami.x . . . . 5 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
8 rami.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
9 rami.r . . . . . 6 (𝜑𝑅𝑉)
10 rami.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
11 rami.c . . . . . . . 8 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
12 eqid 2818 . . . . . . . 8 {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
1311, 12ramtcl2 16335 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1411, 12ramtcl 16334 . . . . . . 7 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1513, 14bitr4d 283 . . . . . 6 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
168, 9, 10, 15syl3anc 1363 . . . . 5 (𝜑 → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}))
177, 16mpbid 233 . . . 4 (𝜑 → (𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
18 breq1 5060 . . . . . . . 8 (𝑛 = (𝑀 Ramsey 𝐹) → (𝑛 ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑠)))
1918imbi1d 343 . . . . . . 7 (𝑛 = (𝑀 Ramsey 𝐹) → ((𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2019albidv 1912 . . . . . 6 (𝑛 = (𝑀 Ramsey 𝐹) → (∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2120elrab 3677 . . . . 5 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∧ ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
2221simprbi 497 . . . 4 ((𝑀 Ramsey 𝐹) ∈ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))} → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
2317, 22syl 17 . . 3 (𝜑 → ∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
24 rami.l . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆))
25 fveq2 6663 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
2625breq2d 5069 . . . . 5 (𝑠 = 𝑆 → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) ↔ (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)))
27 oveq1 7152 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝐶𝑀) = (𝑆𝐶𝑀))
2827oveq2d 7161 . . . . . 6 (𝑠 = 𝑆 → (𝑅m (𝑠𝐶𝑀)) = (𝑅m (𝑆𝐶𝑀)))
29 pweq 4538 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
3029rexeqdv 3414 . . . . . . 7 (𝑠 = 𝑆 → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3130rexbidv 3294 . . . . . 6 (𝑠 = 𝑆 → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3228, 31raleqbidv 3399 . . . . 5 (𝑠 = 𝑆 → (∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
3326, 32imbi12d 346 . . . 4 (𝑠 = 𝑆 → (((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
3433spcgv 3592 . . 3 (𝑆𝑊 → (∀𝑠((𝑀 Ramsey 𝐹) ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) → ((𝑀 Ramsey 𝐹) ≤ (♯‘𝑆) → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
356, 23, 24, 34syl3c 66 . 2 (𝜑 → ∀𝑓 ∈ (𝑅m (𝑆𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
36 rami.g . . 3 (𝜑𝐺:(𝑆𝐶𝑀)⟶𝑅)
37 ovex 7178 . . . 4 (𝑆𝐶𝑀) ∈ V
38 elmapg 8408 . . . 4 ((𝑅𝑉 ∧ (𝑆𝐶𝑀) ∈ V) → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
399, 37, 38sylancl 586 . . 3 (𝜑 → (𝐺 ∈ (𝑅m (𝑆𝐶𝑀)) ↔ 𝐺:(𝑆𝐶𝑀)⟶𝑅))
4036, 39mpbird 258 . 2 (𝜑𝐺 ∈ (𝑅m (𝑆𝐶𝑀)))
415, 35, 40rspcdva 3622 1 (𝜑 → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wal 1526   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   class class class wbr 5057  ccnv 5547  cima 5551  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  m cmap 8395  cle 10664  0cn0 11885  chash 13678   Ramsey cram 16323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-ram 16325
This theorem is referenced by:  ramlb  16343  ramub1lem2  16351
  Copyright terms: Public domain W3C validator