MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   GIF version

Theorem ramlb 15504
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramlb.m (𝜑𝑀 ∈ ℕ0)
ramlb.r (𝜑𝑅𝑉)
ramlb.f (𝜑𝐹:𝑅⟶ℕ0)
ramlb.s (𝜑𝑁 ∈ ℕ0)
ramlb.g (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
ramlb.i ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
Assertion
Ref Expression
ramlb (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐹,𝑐,𝑥   𝐺,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝜑,𝑐,𝑥   𝑁,𝑐,𝑥   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑁(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramlb.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
32adantr 479 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4 ramlb.r . . . . . 6 (𝜑𝑅𝑉)
54adantr 479 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅𝑉)
6 ramlb.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
76adantr 479 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0)
8 ramlb.s . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
98adantr 479 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈ ℕ0)
10 simpr 475 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁)
11 ramubcl 15503 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
123, 5, 7, 9, 10, 11syl32anc 1325 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
13 fzfid 12586 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin)
14 hashfz1 12945 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
158, 14syl 17 . . . . . . 7 (𝜑 → (#‘(1...𝑁)) = 𝑁)
1615breq2d 4586 . . . . . 6 (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (#‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁))
1716biimpar 500 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (#‘(1...𝑁)))
18 ramlb.g . . . . . 6 (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
1918adantr 479 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
201, 3, 5, 7, 12, 13, 17, 19rami 15500 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
21 elpwi 4113 . . . . . . . . 9 (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁))
22 ramlb.i . . . . . . . . . . 11 ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
2322adantlr 746 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
24 fzfid 12586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin)
25 simprr 791 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁))
26 ssfi 8039 . . . . . . . . . . . . . 14 (((1...𝑁) ∈ Fin ∧ 𝑥 ⊆ (1...𝑁)) → 𝑥 ∈ Fin)
2724, 25, 26syl2anc 690 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin)
28 hashcl 12958 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (#‘𝑥) ∈ ℕ0)
3029nn0red 11196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (#‘𝑥) ∈ ℝ)
31 simpl 471 . . . . . . . . . . . . 13 ((𝑐𝑅𝑥 ⊆ (1...𝑁)) → 𝑐𝑅)
32 ffvelrn 6247 . . . . . . . . . . . . 13 ((𝐹:𝑅⟶ℕ0𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
337, 31, 32syl2an 492 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℕ0)
3433nn0red 11196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℝ)
3530, 34ltnled 10032 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((#‘𝑥) < (𝐹𝑐) ↔ ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3623, 35sylibd 227 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3721, 36sylanr2 682 . . . . . . . 8 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3837con2d 127 . . . . . . 7 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹𝑐) ≤ (#‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
39 imnan 436 . . . . . . 7 (((𝐹𝑐) ≤ (#‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) ↔ ¬ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4038, 39sylib 206 . . . . . 6 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4140pm2.21d 116 . . . . 5 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4241rexlimdvva 3016 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4320, 42mpd 15 . . 3 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
4443pm2.01da 456 . 2 (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
458nn0red 11196 . . . 4 (𝜑𝑁 ∈ ℝ)
4645rexrd 9942 . . 3 (𝜑𝑁 ∈ ℝ*)
47 ramxrcl 15502 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*)
482, 4, 6, 47syl3anc 1317 . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℝ*)
49 xrltnle 9953 . . 3 ((𝑁 ∈ ℝ* ∧ (𝑀 Ramsey 𝐹) ∈ ℝ*) → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5046, 48, 49syl2anc 690 . 2 (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5144, 50mpbird 245 1 (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wrex 2893  {crab 2896  Vcvv 3169  wss 3536  𝒫 cpw 4104  {csn 4121   class class class wbr 4574  ccnv 5024  cima 5028  wf 5783  cfv 5787  (class class class)co 6524  cmpt2 6526  Fincfn 7815  1c1 9790  *cxr 9926   < clt 9927  cle 9928  0cn0 11136  ...cfz 12149  #chash 12931   Ramsey cram 15484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208  df-uz 11517  df-fz 12150  df-hash 12932  df-ram 15486
This theorem is referenced by:  0ram  15505  ram0  15507
  Copyright terms: Public domain W3C validator