MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Visualization version   GIF version

Theorem ramub1lem2 15778
Description: Lemma for ramub1 15779. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
Assertion
Ref Expression
ramub1lem2 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Distinct variable groups:   𝑥,𝑢,𝑐,𝑦,𝑧,𝐹   𝑎,𝑏,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝑅,𝑐,𝑢,𝑥,𝑦,𝑧   𝜑,𝑐,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝐶,𝑐,𝑢,𝑥,𝑦,𝑧   𝐻,𝑐,𝑢,𝑥,𝑦,𝑧   𝐾,𝑐,𝑢,𝑥,𝑦,𝑧   𝑋,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem2
Dummy variables 𝑑 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramub1.m . . . 4 (𝜑𝑀 ∈ ℕ)
3 nnm1nn0 11372 . . . 4 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
42, 3syl 17 . . 3 (𝜑 → (𝑀 − 1) ∈ ℕ0)
5 ramub1.r . . 3 (𝜑𝑅 ∈ Fin)
6 ramub1.1 . . 3 (𝜑𝐺:𝑅⟶ℕ0)
7 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
8 ramub1.4 . . . 4 (𝜑𝑆 ∈ Fin)
9 diffi 8233 . . . 4 (𝑆 ∈ Fin → (𝑆 ∖ {𝑋}) ∈ Fin)
108, 9syl 17 . . 3 (𝜑 → (𝑆 ∖ {𝑋}) ∈ Fin)
117nn0red 11390 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℝ)
1211leidd 10632 . . . 4 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ ((𝑀 − 1) Ramsey 𝐺))
13 hashcl 13185 . . . . . . 7 ((𝑆 ∖ {𝑋}) ∈ Fin → (#‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1410, 13syl 17 . . . . . 6 (𝜑 → (#‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1514nn0cnd 11391 . . . . 5 (𝜑 → (#‘(𝑆 ∖ {𝑋})) ∈ ℂ)
167nn0cnd 11391 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℂ)
17 1cnd 10094 . . . . 5 (𝜑 → 1 ∈ ℂ)
18 undif1 4076 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = (𝑆 ∪ {𝑋})
19 ramub1.x . . . . . . . . . 10 (𝜑𝑋𝑆)
2019snssd 4372 . . . . . . . . 9 (𝜑 → {𝑋} ⊆ 𝑆)
21 ssequn2 3819 . . . . . . . . 9 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑋}) = 𝑆)
2220, 21sylib 208 . . . . . . . 8 (𝜑 → (𝑆 ∪ {𝑋}) = 𝑆)
2318, 22syl5eq 2697 . . . . . . 7 (𝜑 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
2423fveq2d 6233 . . . . . 6 (𝜑 → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = (#‘𝑆))
25 neldifsnd 4355 . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
26 hashunsng 13219 . . . . . . . 8 (𝑋𝑆 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1)))
2719, 26syl 17 . . . . . . 7 (𝜑 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1)))
2810, 25, 27mp2and 715 . . . . . 6 (𝜑 → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1))
29 ramub1.5 . . . . . 6 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3024, 28, 293eqtr3d 2693 . . . . 5 (𝜑 → ((#‘(𝑆 ∖ {𝑋})) + 1) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3115, 16, 17, 30addcan2ad 10280 . . . 4 (𝜑 → (#‘(𝑆 ∖ {𝑋})) = ((𝑀 − 1) Ramsey 𝐺))
3212, 31breqtrrd 4713 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ (#‘(𝑆 ∖ {𝑋})))
33 ramub1.6 . . . . . 6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
3433adantr 480 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
351hashbcval 15753 . . . . . . . . . . . . . . 15 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)})
3610, 4, 35syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)})
3736eleq2d 2716 . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ 𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)}))
38 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (#‘𝑥) = (#‘𝑢))
3938eqeq1d 2653 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((#‘𝑥) = (𝑀 − 1) ↔ (#‘𝑢) = (𝑀 − 1)))
4039elrab 3396 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)} ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (#‘𝑢) = (𝑀 − 1)))
4137, 40syl6bb 276 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (#‘𝑢) = (𝑀 − 1))))
4241simprbda 652 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}))
4342elpwid 4203 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ (𝑆 ∖ {𝑋}))
4443difss2d 3773 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢𝑆)
4520adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → {𝑋} ⊆ 𝑆)
4644, 45unssd 3822 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ⊆ 𝑆)
47 vex 3234 . . . . . . . . . 10 𝑢 ∈ V
48 snex 4938 . . . . . . . . . 10 {𝑋} ∈ V
4947, 48unex 6998 . . . . . . . . 9 (𝑢 ∪ {𝑋}) ∈ V
5049elpw 4197 . . . . . . . 8 ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑢 ∪ {𝑋}) ⊆ 𝑆)
5146, 50sylibr 224 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆)
5210adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆 ∖ {𝑋}) ∈ Fin)
53 ssfi 8221 . . . . . . . . . 10 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ 𝑢 ⊆ (𝑆 ∖ {𝑋})) → 𝑢 ∈ Fin)
5452, 43, 53syl2anc 694 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ Fin)
55 neldifsnd 4355 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
5643, 55ssneldd 3639 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋𝑢)
5719adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑋𝑆)
58 hashunsng 13219 . . . . . . . . . 10 (𝑋𝑆 → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1)))
5957, 58syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1)))
6054, 56, 59mp2and 715 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1))
6141simplbda 653 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘𝑢) = (𝑀 − 1))
6261oveq1d 6705 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((#‘𝑢) + 1) = ((𝑀 − 1) + 1))
632nncnd 11074 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
64 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
65 npcan 10328 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
6663, 64, 65sylancl 695 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
6766adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
6860, 62, 673eqtrd 2689 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘(𝑢 ∪ {𝑋})) = 𝑀)
69 fveq2 6229 . . . . . . . . 9 (𝑥 = (𝑢 ∪ {𝑋}) → (#‘𝑥) = (#‘(𝑢 ∪ {𝑋})))
7069eqeq1d 2653 . . . . . . . 8 (𝑥 = (𝑢 ∪ {𝑋}) → ((#‘𝑥) = 𝑀 ↔ (#‘(𝑢 ∪ {𝑋})) = 𝑀))
7170elrab 3396 . . . . . . 7 ((𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀} ↔ ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ (#‘(𝑢 ∪ {𝑋})) = 𝑀))
7251, 68, 71sylanbrc 699 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
732nnnn0d 11389 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
741hashbcval 15753 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
758, 73, 74syl2anc 694 . . . . . . 7 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7675adantr 480 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7772, 76eleqtrrd 2733 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ (𝑆𝐶𝑀))
7834, 77ffvelrnd 6400 . . . 4 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝐾‘(𝑢 ∪ {𝑋})) ∈ 𝑅)
79 ramub1.h . . . 4 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
8078, 79fmptd 6425 . . 3 (𝜑𝐻:((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))⟶𝑅)
811, 4, 5, 6, 7, 10, 32, 80rami 15766 . 2 (𝜑 → ∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))
8273adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑀 ∈ ℕ0)
835adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑅 ∈ Fin)
84 ramub1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑅⟶ℕ)
8584adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐹:𝑅⟶ℕ)
86 simprll 819 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑑𝑅)
8785, 86ffvelrnd 6400 . . . . . . . . . 10 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐹𝑑) ∈ ℕ)
88 nnm1nn0 11372 . . . . . . . . . 10 ((𝐹𝑑) ∈ ℕ → ((𝐹𝑑) − 1) ∈ ℕ0)
8987, 88syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ((𝐹𝑑) − 1) ∈ ℕ0)
9089adantr 480 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → ((𝐹𝑑) − 1) ∈ ℕ0)
9185ffvelrnda 6399 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ)
9291nnnn0d 11389 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ0)
9390, 92ifcld 4164 . . . . . . 7 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) ∈ ℕ0)
94 eqid 2651 . . . . . . 7 (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9593, 94fmptd 6425 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))):𝑅⟶ℕ0)
96 equequ2 1999 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (𝑦 = 𝑥𝑦 = 𝑑))
97 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = 𝑑 → (𝐹𝑥) = (𝐹𝑑))
9897oveq1d 6705 . . . . . . . . . . . 12 (𝑥 = 𝑑 → ((𝐹𝑥) − 1) = ((𝐹𝑑) − 1))
9996, 98ifbieq1d 4142 . . . . . . . . . . 11 (𝑥 = 𝑑 → if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)) = if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
10099mpteq2dv 4778 . . . . . . . . . 10 (𝑥 = 𝑑 → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))))
101100oveq2d 6706 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
102 ramub1.g . . . . . . . . 9 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
103 ovex 6718 . . . . . . . . 9 (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ V
104101, 102, 103fvmpt 6321 . . . . . . . 8 (𝑑𝑅 → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
10586, 104syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
1066adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐺:𝑅⟶ℕ0)
107106, 86ffvelrnd 6400 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ∈ ℕ0)
108105, 107eqeltrrd 2731 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ ℕ0)
109 simprlr 820 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))
110 simprrl 821 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ≤ (#‘𝑤))
111105, 110eqbrtrrd 4709 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ≤ (#‘𝑤))
11233adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
1138adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑆 ∈ Fin)
114109elpwid 4203 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
115114difss2d 3773 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤𝑆)
1161hashbcss 15755 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑤𝑆𝑀 ∈ ℕ0) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
117113, 115, 82, 116syl3anc 1366 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
118112, 117fssresd 6109 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐾 ↾ (𝑤𝐶𝑀)):(𝑤𝐶𝑀)⟶𝑅)
1191, 82, 83, 95, 108, 109, 111, 118rami 15766 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))
120 equequ1 1998 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝑦 = 𝑑𝑐 = 𝑑))
121 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
122120, 121ifbieq2d 4144 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
123 ovex 6718 . . . . . . . . . . . . . 14 ((𝐹𝑑) − 1) ∈ V
124 fvex 6239 . . . . . . . . . . . . . 14 (𝐹𝑐) ∈ V
125123, 124ifex 4189 . . . . . . . . . . . . 13 if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ∈ V
126122, 94, 125fvmpt 6321 . . . . . . . . . . . 12 (𝑐𝑅 → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
127126ad2antrl 764 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
128127breq1d 4695 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → (((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ↔ if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣)))
129128anbi1d 741 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) ↔ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))))
1302ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑀 ∈ ℕ)
1315ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑅 ∈ Fin)
13284ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐹:𝑅⟶ℕ)
1336ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐺:𝑅⟶ℕ0)
1347ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
1358ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑆 ∈ Fin)
13629ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
13733ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
13819ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑋𝑆)
13986adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑑𝑅)
140114adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
141110adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝐺𝑑) ≤ (#‘𝑤))
142 simprrr 822 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
143142adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
144 simprll 819 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑐𝑅)
145 simprlr 820 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ∈ 𝒫 𝑤)
146145elpwid 4203 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣𝑤)
147 simprrl 821 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣))
148 simprrr 822 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))
149 cnvresima 5661 . . . . . . . . . . . . 13 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) = ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀))
150 inss1 3866 . . . . . . . . . . . . 13 ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) ⊆ (𝐾 “ {𝑐})
151149, 150eqsstri 3668 . . . . . . . . . . . 12 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) ⊆ (𝐾 “ {𝑐})
152148, 151syl6ss 3648 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (𝐾 “ {𝑐}))
153130, 131, 132, 102, 133, 134, 1, 135, 136, 137, 138, 79, 139, 140, 141, 143, 144, 146, 147, 152ramub1lem1 15777 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
154153expr 642 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
155129, 154sylbid 230 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
156155anassrs 681 . . . . . . 7 ((((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) ∧ 𝑣 ∈ 𝒫 𝑤) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
157156rexlimdva 3060 . . . . . 6 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) → (∃𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
158157reximdva 3046 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
159119, 158mpd 15 . . . 4 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
160159expr 642 . . 3 ((𝜑 ∧ (𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))) → (((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
161160rexlimdvva 3067 . 2 (𝜑 → (∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
16281, 161mpd 15 1 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  ifcif 4119  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cmpt 4762  ccnv 5142  cres 5145  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  Fincfn 7997  cc 9972  1c1 9975   + caddc 9977  cle 10113  cmin 10304  cn 11058  0cn0 11330  #chash 13157   Ramsey cram 15750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-ram 15752
This theorem is referenced by:  ramub1  15779
  Copyright terms: Public domain W3C validator