MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Visualization version   GIF version

Theorem ramub2 15642
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
ramub2.n (𝜑𝑁 ∈ ℕ0)
ramub2.i ((𝜑 ∧ ((#‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
Assertion
Ref Expression
ramub2 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,𝑥,𝐶   𝜑,𝑐,𝑓,𝑠,𝑥   𝐹,𝑐,𝑓,𝑠,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑠,𝑥   𝑁,𝑎,𝑐,𝑓,𝑖,𝑠,𝑥   𝑉,𝑐,𝑓,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramub2
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 rami.m . 2 (𝜑𝑀 ∈ ℕ0)
3 rami.r . 2 (𝜑𝑅𝑉)
4 rami.f . 2 (𝜑𝐹:𝑅⟶ℕ0)
5 ramub2.n . 2 (𝜑𝑁 ∈ ℕ0)
65adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈ ℕ0)
7 hashfz1 13074 . . . . . . 7 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
86, 7syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (#‘(1...𝑁)) = 𝑁)
9 simprl 793 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (#‘𝑡))
108, 9eqbrtrd 4635 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (#‘(1...𝑁)) ≤ (#‘𝑡))
11 fzfid 12712 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin)
12 vex 3189 . . . . . 6 𝑡 ∈ V
13 hashdom 13108 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑡 ∈ V) → ((#‘(1...𝑁)) ≤ (#‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1411, 12, 13sylancl 693 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((#‘(1...𝑁)) ≤ (#‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1510, 14mpbid 222 . . . 4 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡)
1612domen 7912 . . . 4 ((1...𝑁) ≼ 𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
1715, 16sylib 208 . . 3 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
18 simpll 789 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝜑)
19 ensym 7949 . . . . . . . 8 ((1...𝑁) ≈ 𝑠𝑠 ≈ (1...𝑁))
2019ad2antrl 763 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠 ≈ (1...𝑁))
21 hasheni 13076 . . . . . . 7 (𝑠 ≈ (1...𝑁) → (#‘𝑠) = (#‘(1...𝑁)))
2220, 21syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (#‘𝑠) = (#‘(1...𝑁)))
235ad2antrr 761 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑁 ∈ ℕ0)
2423, 7syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (#‘(1...𝑁)) = 𝑁)
2522, 24eqtrd 2655 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (#‘𝑠) = 𝑁)
26 simplrr 800 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅)
2712a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑡 ∈ V)
28 simprr 795 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠𝑡)
292ad2antrr 761 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑀 ∈ ℕ0)
301hashbcss 15632 . . . . . . 7 ((𝑡 ∈ V ∧ 𝑠𝑡𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3127, 28, 29, 30syl3anc 1323 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3226, 31fssresd 6028 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)
33 vex 3189 . . . . . . 7 𝑔 ∈ V
3433resex 5402 . . . . . 6 (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V
35 feq1 5983 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))
3635anbi2d 739 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((#‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((#‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))
3736anbi2d 739 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((#‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((#‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))))
38 cnveq 5256 . . . . . . . . . . . 12 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → 𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)))
3938imaeq1d 5424 . . . . . . . . . . 11 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}))
40 cnvresima 5582 . . . . . . . . . . 11 ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))
4139, 40syl6eq 2671 . . . . . . . . . 10 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
4241sseq2d 3612 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4342anbi2d 739 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
44432rexbidv 3050 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
4537, 44imbi12d 334 . . . . . 6 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((#‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((#‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))))
46 ramub2.i . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
4734, 45, 46vtocl 3245 . . . . 5 ((𝜑 ∧ ((#‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4818, 25, 32, 47syl12anc 1321 . . . 4 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
49 sstr 3591 . . . . . . . . . 10 ((𝑥𝑠𝑠𝑡) → 𝑥𝑡)
5049expcom 451 . . . . . . . . 9 (𝑠𝑡 → (𝑥𝑠𝑥𝑡))
5150ad2antll 764 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
52 selpw 4137 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
53 selpw 4137 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑡𝑥𝑡)
5451, 52, 533imtr4g 285 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥 ∈ 𝒫 𝑠𝑥 ∈ 𝒫 𝑡))
55 id 22 . . . . . . . . . 10 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
56 inss1 3811 . . . . . . . . . 10 ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (𝑔 “ {𝑐})
5755, 56syl6ss 3595 . . . . . . . . 9 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))
5857a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
5958anim2d 588 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6054, 59anim12d 585 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))))
6160reximdv2 3008 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6261reximdv 3010 . . . 4 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6348, 62mpd 15 . . 3 (((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
6417, 63exlimddv 1860 . 2 ((𝜑 ∧ (𝑁 ≤ (#‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
651, 2, 3, 4, 5, 64ramub 15641 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wrex 2908  {crab 2911  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  ccnv 5073  cres 5076  cima 5077  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  cen 7896  cdom 7897  Fincfn 7899  1c1 9881  cle 10019  0cn0 11236  ...cfz 12268  #chash 13057   Ramsey cram 15627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-ram 15629
This theorem is referenced by:  ramub1  15656
  Copyright terms: Public domain W3C validator