Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankaltopb Structured version   Visualization version   GIF version

Theorem rankaltopb 33435
Description: Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rankaltopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))

Proof of Theorem rankaltopb
StepHypRef Expression
1 snwf 9232 . . 3 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
2 df-altop 33414 . . . . . 6 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
32fveq2i 6667 . . . . 5 (rank‘⟪𝐴, 𝐵⟫) = (rank‘{{𝐴}, {𝐴, {𝐵}}})
4 snwf 9232 . . . . . . 7 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
54adantr 483 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
6 prwf 9234 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴, {𝐵}} ∈ (𝑅1 “ On))
7 rankprb 9274 . . . . . 6 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
85, 6, 7syl2anc 586 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
93, 8syl5eq 2868 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
10 snsspr1 4740 . . . . . . . 8 {𝐴} ⊆ {𝐴, {𝐵}}
11 ssequn1 4155 . . . . . . . 8 ({𝐴} ⊆ {𝐴, {𝐵}} ↔ ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}})
1210, 11mpbi 232 . . . . . . 7 ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}}
1312fveq2i 6667 . . . . . 6 (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = (rank‘{𝐴, {𝐵}})
14 rankunb 9273 . . . . . . 7 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
155, 6, 14syl2anc 586 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
16 rankprb 9274 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{𝐴, {𝐵}}) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1713, 15, 163eqtr3a 2880 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
18 suceq 6250 . . . . 5 (((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1917, 18syl 17 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
209, 19eqtrd 2856 . . 3 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
211, 20sylan2 594 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
22 ranksnb 9250 . . . . 5 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
2322uneq2d 4138 . . . 4 (𝐵 (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)))
24 suceq 6250 . . . 4 (((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
25 suceq 6250 . . . 4 (suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2623, 24, 253syl 18 . . 3 (𝐵 (𝑅1 “ On) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2726adantl 484 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2821, 27eqtrd 2856 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cun 3933  wss 3935  {csn 4560  {cpr 4562   cuni 4831  cima 5552  Oncon0 6185  suc csuc 6187  cfv 6349  𝑅1cr1 9185  rankcrnk 9186  caltop 33412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187  df-rank 9188  df-altop 33414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator