MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   GIF version

Theorem rankcf 9550
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf ¬ 𝐴 ≺ (cf‘(rank‘𝐴))

Proof of Theorem rankcf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 8609 . . 3 (rank‘𝐴) ∈ On
2 onzsl 7000 . . 3 ((rank‘𝐴) ∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))))
31, 2mpbi 220 . 2 ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))
4 sdom0 8043 . . . 4 ¬ 𝐴 ≺ ∅
5 fveq2 6153 . . . . . 6 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = (cf‘∅))
6 cf0 9024 . . . . . 6 (cf‘∅) = ∅
75, 6syl6eq 2671 . . . . 5 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = ∅)
87breq2d 4630 . . . 4 ((rank‘𝐴) = ∅ → (𝐴 ≺ (cf‘(rank‘𝐴)) ↔ 𝐴 ≺ ∅))
94, 8mtbiri 317 . . 3 ((rank‘𝐴) = ∅ → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
10 fveq2 6153 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) = (cf‘suc 𝑥))
11 cfsuc 9030 . . . . . . 7 (𝑥 ∈ On → (cf‘suc 𝑥) = 1𝑜)
1210, 11sylan9eqr 2677 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) = 1𝑜)
13 nsuceq0 5769 . . . . . . . . 9 suc 𝑥 ≠ ∅
14 neeq1 2852 . . . . . . . . 9 ((rank‘𝐴) = suc 𝑥 → ((rank‘𝐴) ≠ ∅ ↔ suc 𝑥 ≠ ∅))
1513, 14mpbiri 248 . . . . . . . 8 ((rank‘𝐴) = suc 𝑥 → (rank‘𝐴) ≠ ∅)
16 fveq2 6153 . . . . . . . . . . 11 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
17 0elon 5742 . . . . . . . . . . . . 13 ∅ ∈ On
18 r1fnon 8581 . . . . . . . . . . . . . 14 𝑅1 Fn On
19 fndm 5953 . . . . . . . . . . . . . 14 (𝑅1 Fn On → dom 𝑅1 = On)
2018, 19ax-mp 5 . . . . . . . . . . . . 13 dom 𝑅1 = On
2117, 20eleqtrri 2697 . . . . . . . . . . . 12 ∅ ∈ dom 𝑅1
22 rankonid 8643 . . . . . . . . . . . 12 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
2321, 22mpbi 220 . . . . . . . . . . 11 (rank‘∅) = ∅
2416, 23syl6eq 2671 . . . . . . . . . 10 (𝐴 = ∅ → (rank‘𝐴) = ∅)
2524necon3i 2822 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → 𝐴 ≠ ∅)
26 rankvaln 8613 . . . . . . . . . . 11 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
2726necon1ai 2817 . . . . . . . . . 10 ((rank‘𝐴) ≠ ∅ → 𝐴 (𝑅1 “ On))
28 breq2 4622 . . . . . . . . . . 11 (𝑦 = 𝐴 → (1𝑜𝑦 ↔ 1𝑜𝐴))
29 neeq1 2852 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
30 0sdom1dom 8109 . . . . . . . . . . . 12 (∅ ≺ 𝑦 ↔ 1𝑜𝑦)
31 vex 3192 . . . . . . . . . . . . 13 𝑦 ∈ V
32310sdom 8042 . . . . . . . . . . . 12 (∅ ≺ 𝑦𝑦 ≠ ∅)
3330, 32bitr3i 266 . . . . . . . . . . 11 (1𝑜𝑦𝑦 ≠ ∅)
3428, 29, 33vtoclbg 3256 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (1𝑜𝐴𝐴 ≠ ∅))
3527, 34syl 17 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → (1𝑜𝐴𝐴 ≠ ∅))
3625, 35mpbird 247 . . . . . . . 8 ((rank‘𝐴) ≠ ∅ → 1𝑜𝐴)
3715, 36syl 17 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → 1𝑜𝐴)
3837adantl 482 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → 1𝑜𝐴)
3912, 38eqbrtrd 4640 . . . . 5 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) ≼ 𝐴)
4039rexlimiva 3022 . . . 4 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) ≼ 𝐴)
41 domnsym 8037 . . . 4 ((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
4240, 41syl 17 . . 3 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
43 nlim0 5747 . . . . . . . . . . . . . . . . 17 ¬ Lim ∅
44 limeq 5699 . . . . . . . . . . . . . . . . 17 ((rank‘𝐴) = ∅ → (Lim (rank‘𝐴) ↔ Lim ∅))
4543, 44mtbiri 317 . . . . . . . . . . . . . . . 16 ((rank‘𝐴) = ∅ → ¬ Lim (rank‘𝐴))
4626, 45syl 17 . . . . . . . . . . . . . . 15 𝐴 (𝑅1 “ On) → ¬ Lim (rank‘𝐴))
4746con4i 113 . . . . . . . . . . . . . 14 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
48 r1elssi 8619 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
4947, 48syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
5049sselda 3587 . . . . . . . . . . . 12 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
51 ranksnb 8641 . . . . . . . . . . . 12 (𝑥 (𝑅1 “ On) → (rank‘{𝑥}) = suc (rank‘𝑥))
5250, 51syl 17 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥))
53 rankelb 8638 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
5447, 53syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
55 limsuc 7003 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ∈ (rank‘𝐴)))
5654, 55sylibd 229 . . . . . . . . . . . 12 (Lim (rank‘𝐴) → (𝑥𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴)))
5756imp 445 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴))
5852, 57eqeltrd 2698 . . . . . . . . . 10 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴))
59 eleq1a 2693 . . . . . . . . . 10 ((rank‘{𝑥}) ∈ (rank‘𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6058, 59syl 17 . . . . . . . . 9 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6160rexlimdva 3025 . . . . . . . 8 (Lim (rank‘𝐴) → (∃𝑥𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6261abssdv 3660 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴))
63 snex 4874 . . . . . . . . . . . . 13 {𝑥} ∈ V
6463dfiun2 4525 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
65 iunid 4546 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = 𝐴
6664, 65eqtr3i 2645 . . . . . . . . . . 11 {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} = 𝐴
6766fveq2i 6156 . . . . . . . . . 10 (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = (rank‘𝐴)
6848sselda 3587 . . . . . . . . . . . . . . 15 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
69 snwf 8623 . . . . . . . . . . . . . . 15 (𝑥 (𝑅1 “ On) → {𝑥} ∈ (𝑅1 “ On))
70 eleq1a 2693 . . . . . . . . . . . . . . 15 ({𝑥} ∈ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7168, 69, 703syl 18 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7271rexlimdva 3025 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7372abssdv 3660 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On))
74 abrexexg 7095 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V)
75 eleq1 2686 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On)))
76 sseq1 3610 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
77 vex 3192 . . . . . . . . . . . . . . 15 𝑧 ∈ V
7877r1elss 8620 . . . . . . . . . . . . . 14 (𝑧 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On))
7975, 76, 78vtoclbg 3256 . . . . . . . . . . . . 13 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8074, 79syl 17 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8173, 80mpbird 247 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On))
82 rankuni2b 8667 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8381, 82syl 17 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8467, 83syl5eqr 2669 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
85 fvex 6163 . . . . . . . . . . 11 (rank‘𝑧) ∈ V
8685dfiun2 4525 . . . . . . . . . 10 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)}
87 fveq2 6153 . . . . . . . . . . . 12 (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥}))
8863, 87abrexco 6462 . . . . . . . . . . 11 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8988unieqi 4416 . . . . . . . . . 10 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9086, 89eqtri 2643 . . . . . . . . 9 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9184, 90syl6req 2672 . . . . . . . 8 (𝐴 (𝑅1 “ On) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
9247, 91syl 17 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
93 fvex 6163 . . . . . . . 8 (rank‘𝐴) ∈ V
9493cfslb 9039 . . . . . . 7 ((Lim (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
9562, 92, 94mpd3an23 1423 . . . . . 6 (Lim (rank‘𝐴) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
96 fveq2 6153 . . . . . . . . . . 11 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
9796fveq2d 6157 . . . . . . . . . 10 (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴)))
98 breq12 4623 . . . . . . . . . 10 ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
9997, 98mpdan 701 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
100 rexeq 3131 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})))
101100abbidv 2738 . . . . . . . . . 10 (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
102 breq12 4623 . . . . . . . . . 10 (({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
103101, 102mpancom 702 . . . . . . . . 9 (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10499, 103imbi12d 334 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)))
105 eqid 2621 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})) = (𝑥𝑦 ↦ (rank‘{𝑥}))
106105rnmpt 5336 . . . . . . . . 9 ran (𝑥𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})}
107 cfon 9028 . . . . . . . . . . 11 (cf‘(rank‘𝑦)) ∈ On
108 sdomdom 7934 . . . . . . . . . . 11 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ≼ (cf‘(rank‘𝑦)))
109 ondomen 8811 . . . . . . . . . . 11 (((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card)
110107, 108, 109sylancr 694 . . . . . . . . . 10 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ∈ dom card)
111 fvex 6163 . . . . . . . . . . . 12 (rank‘{𝑥}) ∈ V
112111, 105fnmpti 5984 . . . . . . . . . . 11 (𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦
113 dffn4 6083 . . . . . . . . . . 11 ((𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})))
114112, 113mpbi 220 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥}))
115 fodomnum 8831 . . . . . . . . . 10 (𝑦 ∈ dom card → ((𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦))
116110, 114, 115mpisyl 21 . . . . . . . . 9 (𝑦 ≺ (cf‘(rank‘𝑦)) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)
117106, 116syl5eqbrr 4654 . . . . . . . 8 (𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦)
118104, 117vtoclg 3255 . . . . . . 7 (𝐴 (𝑅1 “ On) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
11947, 118syl 17 . . . . . 6 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
120 domtr 7960 . . . . . . 7 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴)
121120, 41syl 17 . . . . . 6 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
12295, 119, 121syl6an 567 . . . . 5 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))))
123122pm2.01d 181 . . . 4 (Lim (rank‘𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
124123adantl 482 . . 3 (((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1259, 42, 1243jaoi 1388 . 2 (((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1263, 125ax-mp 5 1 ¬ 𝐴 ≺ (cf‘(rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wrex 2908  Vcvv 3189  wss 3559  c0 3896  {csn 4153   cuni 4407   ciun 4490   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  cima 5082  Oncon0 5687  Lim wlim 5688  suc csuc 5689   Fn wfn 5847  ontowfo 5850  cfv 5852  1𝑜c1o 7505  cdom 7904  csdm 7905  𝑅1cr1 8576  rankcrnk 8577  cardccrd 8712  cfccf 8714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-r1 8578  df-rank 8579  df-card 8716  df-cf 8718  df-acn 8719
This theorem is referenced by:  inatsk  9551  grur1  9593
  Copyright terms: Public domain W3C validator