MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Structured version   Visualization version   GIF version

Theorem rankelb 9255
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 9236 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
21sseld 3968 . . . . 5 (𝐵 (𝑅1 “ On) → (𝐴𝐵𝐴 (𝑅1 “ On)))
3 rankidn 9253 . . . . 5 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
42, 3syl6 35 . . . 4 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
54imp 409 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
6 rankon 9226 . . . . 5 (rank‘𝐵) ∈ On
7 rankon 9226 . . . . 5 (rank‘𝐴) ∈ On
8 ontri1 6227 . . . . 5 (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)))
96, 7, 8mp2an 690 . . . 4 ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))
10 rankdmr1 9232 . . . . . 6 (rank‘𝐵) ∈ dom 𝑅1
11 rankdmr1 9232 . . . . . 6 (rank‘𝐴) ∈ dom 𝑅1
12 r1ord3g 9210 . . . . . 6 (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))))
1310, 11, 12mp2an 690 . . . . 5 ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))
14 r1rankidb 9235 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1514sselda 3969 . . . . 5 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵)))
16 ssel 3963 . . . . 5 ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
1713, 15, 16syl2imc 41 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
189, 17syl5bir 245 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
195, 18mt3d 150 . 2 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
2019ex 415 1 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114  wss 3938   cuni 4840  dom cdm 5557  cima 5560  Oncon0 6193  cfv 6357  𝑅1cr1 9193  rankcrnk 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-r1 9195  df-rank 9196
This theorem is referenced by:  wfelirr  9256  rankval3b  9257  rankel  9270  rankunb  9281  rankuni2b  9284  rankcf  10201
  Copyright terms: Public domain W3C validator