MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelun Structured version   Visualization version   GIF version

Theorem rankelun 9295
Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelun (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴𝐵)) ∈ (rank‘(𝐶𝐷)))

Proof of Theorem rankelun
StepHypRef Expression
1 rankon 9218 . . . . 5 (rank‘𝐶) ∈ On
2 rankon 9218 . . . . 5 (rank‘𝐷) ∈ On
31, 2onun2i 6301 . . . 4 ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On
43onordi 6290 . . 3 Ord ((rank‘𝐶) ∪ (rank‘𝐷))
5 elun1 4152 . . 3 ((rank‘𝐴) ∈ (rank‘𝐶) → (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
6 elun2 4153 . . 3 ((rank‘𝐵) ∈ (rank‘𝐷) → (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
7 ordunel 7536 . . 3 ((Ord ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
84, 5, 6, 7mp3an3an 1463 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
9 rankelun.1 . . 3 𝐴 ∈ V
10 rankelun.2 . . 3 𝐵 ∈ V
119, 10rankun 9279 . 2 (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))
12 rankelun.3 . . 3 𝐶 ∈ V
13 rankelun.4 . . 3 𝐷 ∈ V
1412, 13rankun 9279 . 2 (rank‘(𝐶𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷))
158, 11, 143eltr4g 2930 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴𝐵)) ∈ (rank‘(𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  Vcvv 3495  cun 3934  Ord word 6185  cfv 6350  rankcrnk 9186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-reg 9050  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187  df-rank 9188
This theorem is referenced by:  rankelpr  9296  rankxplim  9302
  Copyright terms: Public domain W3C validator