MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankeq0b Structured version   Visualization version   GIF version

Theorem rankeq0b 9281
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankeq0b (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))

Proof of Theorem rankeq0b
StepHypRef Expression
1 fveq2 6663 . . 3 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
2 r1funlim 9187 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 488 . . . . . 6 Lim dom 𝑅1
4 limomss 7577 . . . . . 6 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
53, 4ax-mp 5 . . . . 5 ω ⊆ dom 𝑅1
6 peano1 7593 . . . . 5 ∅ ∈ ω
75, 6sselii 3962 . . . 4 ∅ ∈ dom 𝑅1
8 rankonid 9250 . . . 4 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
97, 8mpbi 232 . . 3 (rank‘∅) = ∅
101, 9syl6eq 2870 . 2 (𝐴 = ∅ → (rank‘𝐴) = ∅)
11 eqimss 4021 . . . . . . 7 ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅)
1211adantl 484 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅)
13 simpl 485 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 (𝑅1 “ On))
14 rankr1bg 9224 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1513, 7, 14sylancl 588 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1612, 15mpbird 259 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅))
17 r10 9189 . . . . 5 (𝑅1‘∅) = ∅
1816, 17sseqtrdi 4015 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅)
19 ss0 4350 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
2018, 19syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅)
2120ex 415 . 2 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅))
2210, 21impbid2 228 1 (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wss 3934  c0 4289   cuni 4830  dom cdm 5548  cima 5551  Oncon0 6184  Lim wlim 6185  Fun wfun 6342  cfv 6348  ωcom 7572  𝑅1cr1 9183  rankcrnk 9184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-r1 9185  df-rank 9186
This theorem is referenced by:  rankeq0  9282
  Copyright terms: Public domain W3C validator