MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankf Structured version   Visualization version   GIF version

Theorem rankf 9226
Description: The domain and range of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.)
Assertion
Ref Expression
rankf rank: (𝑅1 “ On)⟶On

Proof of Theorem rankf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rank 9197 . . . 4 rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
21funmpt2 6397 . . 3 Fun rank
3 mptv 5174 . . . . . 6 (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
41, 3eqtri 2847 . . . . 5 rank = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
54dmeqi 5776 . . . 4 dom rank = dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
6 dmopab 5787 . . . . 5 dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = {𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
7 abeq1 2949 . . . . . 6 ({𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On) ↔ ∀𝑥(∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 𝑥 (𝑅1 “ On)))
8 rankwflemb 9225 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦))
9 intexrab 5246 . . . . . . 7 (∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦) ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V)
10 isset 3509 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V ↔ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
118, 9, 103bitrri 300 . . . . . 6 (∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 𝑥 (𝑅1 “ On))
127, 11mpgbir 1799 . . . . 5 {𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On)
136, 12eqtri 2847 . . . 4 dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On)
145, 13eqtri 2847 . . 3 dom rank = (𝑅1 “ On)
15 df-fn 6361 . . 3 (rank Fn (𝑅1 “ On) ↔ (Fun rank ∧ dom rank = (𝑅1 “ On)))
162, 14, 15mpbir2an 709 . 2 rank Fn (𝑅1 “ On)
17 rabn0 4342 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦))
188, 17bitr4i 280 . . . 4 (𝑥 (𝑅1 “ On) ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
19 intex 5243 . . . . . 6 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V)
20 vex 3500 . . . . . . 7 𝑥 ∈ V
211fvmpt2 6782 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V) → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
2220, 21mpan 688 . . . . . 6 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
2319, 22sylbi 219 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
24 ssrab2 4059 . . . . . 6 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
25 oninton 7518 . . . . . 6 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ On)
2624, 25mpan 688 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ On)
2723, 26eqeltrd 2916 . . . 4 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) ∈ On)
2818, 27sylbi 219 . . 3 (𝑥 (𝑅1 “ On) → (rank‘𝑥) ∈ On)
2928rgen 3151 . 2 𝑥 (𝑅1 “ On)(rank‘𝑥) ∈ On
30 ffnfv 6885 . 2 (rank: (𝑅1 “ On)⟶On ↔ (rank Fn (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(rank‘𝑥) ∈ On))
3116, 29, 30mpbir2an 709 1 rank: (𝑅1 “ On)⟶On
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1536  wex 1779  wcel 2113  {cab 2802  wne 3019  wral 3141  wrex 3142  {crab 3145  Vcvv 3497  wss 3939  c0 4294   cuni 4841   cint 4879  {copab 5131  cmpt 5149  dom cdm 5558  cima 5561  Oncon0 6194  suc csuc 6196  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  𝑅1cr1 9194  rankcrnk 9195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-r1 9196  df-rank 9197
This theorem is referenced by:  rankon  9227  rankvaln  9231  tcrank  9316  hsmexlem4  9854  hsmexlem5  9855  grur1  10245  aomclem4  39663
  Copyright terms: Public domain W3C validator