MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankopb Structured version   Visualization version   GIF version

Theorem rankopb 8890
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankopb
StepHypRef Expression
1 dfopg 4551 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21fveq2d 6357 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = (rank‘{{𝐴}, {𝐴, 𝐵}}))
3 snwf 8847 . . . 4 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
43adantr 472 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
5 prwf 8849 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
6 rankprb 8889 . . 3 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
74, 5, 6syl2anc 696 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
8 snsspr1 4490 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 ssequn1 3926 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
108, 9mpbi 220 . . . . 5 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
1110fveq2i 6356 . . . 4 (rank‘({𝐴} ∪ {𝐴, 𝐵})) = (rank‘{𝐴, 𝐵})
12 rankunb 8888 . . . . 5 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
134, 5, 12syl2anc 696 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
14 rankprb 8889 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1511, 13, 143eqtr3a 2818 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
16 suceq 5951 . . 3 (((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1715, 16syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
182, 7, 173eqtrd 2798 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cun 3713  wss 3715  {csn 4321  {cpr 4323  cop 4327   cuni 4588  cima 5269  Oncon0 5884  suc csuc 5886  cfv 6049  𝑅1cr1 8800  rankcrnk 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-r1 8802  df-rank 8803
This theorem is referenced by:  rankop  8896
  Copyright terms: Public domain W3C validator