Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1a Structured version   Visualization version   GIF version

Theorem rankr1a 8643
 Description: A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 8642 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 8671 for the subset version. (Contributed by Raph Levien, 29-May-2004.)
Hypothesis
Ref Expression
rankid.1 𝐴 ∈ V
Assertion
Ref Expression
rankr1a (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))

Proof of Theorem rankr1a
StepHypRef Expression
1 rankid.1 . . . 4 𝐴 ∈ V
21ssrankr1 8642 . . 3 (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1𝐵)))
3 rankon 8602 . . . 4 (rank‘𝐴) ∈ On
4 ontri1 5716 . . . 4 ((𝐵 ∈ On ∧ (rank‘𝐴) ∈ On) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
53, 4mpan2 706 . . 3 (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
62, 5bitr3d 270 . 2 (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
76con4bid 307 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∈ wcel 1987  Vcvv 3186   ⊆ wss 3555  Oncon0 5682  ‘cfv 5847  𝑅1cr1 8569  rankcrnk 8570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-r1 8571  df-rank 8572 This theorem is referenced by:  r1val2  8644  r1pwALT  8653  elhf2  31921
 Copyright terms: Public domain W3C validator