MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksuc Structured version   Visualization version   GIF version

Theorem ranksuc 8672
Description: The rank of a successor. (Contributed by NM, 18-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
ranksuc (rank‘suc 𝐴) = suc (rank‘𝐴)

Proof of Theorem ranksuc
StepHypRef Expression
1 df-suc 5688 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
21fveq2i 6151 . 2 (rank‘suc 𝐴) = (rank‘(𝐴 ∪ {𝐴}))
3 rankr1b.1 . . . 4 𝐴 ∈ V
4 snex 4869 . . . 4 {𝐴} ∈ V
53, 4rankun 8663 . . 3 (rank‘(𝐴 ∪ {𝐴})) = ((rank‘𝐴) ∪ (rank‘{𝐴}))
63ranksn 8661 . . . . 5 (rank‘{𝐴}) = suc (rank‘𝐴)
76uneq2i 3742 . . . 4 ((rank‘𝐴) ∪ (rank‘{𝐴})) = ((rank‘𝐴) ∪ suc (rank‘𝐴))
8 sssucid 5761 . . . . 5 (rank‘𝐴) ⊆ suc (rank‘𝐴)
9 ssequn1 3761 . . . . 5 ((rank‘𝐴) ⊆ suc (rank‘𝐴) ↔ ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴))
108, 9mpbi 220 . . . 4 ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴)
117, 10eqtri 2643 . . 3 ((rank‘𝐴) ∪ (rank‘{𝐴})) = suc (rank‘𝐴)
125, 11eqtri 2643 . 2 (rank‘(𝐴 ∪ {𝐴})) = suc (rank‘𝐴)
132, 12eqtri 2643 1 (rank‘suc 𝐴) = suc (rank‘𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  wss 3555  {csn 4148  suc csuc 5684  cfv 5847  rankcrnk 8570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-r1 8571  df-rank 8572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator