MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Visualization version   GIF version

Theorem rankval3b 9243
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 9212 . . . . . . . . . 10 (rank‘𝐴) ∈ On
2 simprl 767 . . . . . . . . . 10 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → 𝑥 ∈ On)
3 ontri1 6218 . . . . . . . . . 10 (((rank‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
41, 2, 3sylancr 587 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
54con2bid 356 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ⊆ 𝑥))
6 r1elssi 9222 . . . . . . . . . . . . . . . . . 18 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
76adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
87sselda 3964 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑦 (𝑅1 “ On))
9 rankdmr1 9218 . . . . . . . . . . . . . . . . . 18 (rank‘𝐴) ∈ dom 𝑅1
10 r1funlim 9183 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1110simpri 486 . . . . . . . . . . . . . . . . . . 19 Lim dom 𝑅1
12 limord 6243 . . . . . . . . . . . . . . . . . . 19 (Lim dom 𝑅1 → Ord dom 𝑅1)
13 ordtr1 6227 . . . . . . . . . . . . . . . . . . 19 (Ord dom 𝑅1 → ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
159, 14mpan2 687 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (rank‘𝐴) → 𝑥 ∈ dom 𝑅1)
1615ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ dom 𝑅1)
17 rankr1ag 9219 . . . . . . . . . . . . . . . 16 ((𝑦 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
188, 16, 17syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
1918ralbidva 3193 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → (∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥) ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥))
2019biimpar 478 . . . . . . . . . . . . 13 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2120an32s 648 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
22 dfss3 3953 . . . . . . . . . . . 12 (𝐴 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2321, 22sylibr 235 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ (𝑅1𝑥))
24 simpll 763 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
2515adantl 482 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝑥 ∈ dom 𝑅1)
26 rankr1bg 9220 . . . . . . . . . . . 12 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2724, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2823, 27mpbid 233 . . . . . . . . . 10 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (rank‘𝐴) ⊆ 𝑥)
2928ex 413 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
3029adantrl 712 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
315, 30sylbird 261 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (¬ (rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ⊆ 𝑥))
3231pm2.18d 127 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (rank‘𝐴) ⊆ 𝑥)
3332ex 413 . . . . 5 (𝐴 (𝑅1 “ On) → ((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3433alrimiv 1919 . . . 4 (𝐴 (𝑅1 “ On) → ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
35 ssintab 4884 . . . 4 ((rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3634, 35sylibr 235 . . 3 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)})
37 df-rab 3144 . . . 4 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3837inteqi 4871 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3936, 38sseqtrrdi 4015 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
40 rankelb 9241 . . . 4 (𝐴 (𝑅1 “ On) → (𝑦𝐴 → (rank‘𝑦) ∈ (rank‘𝐴)))
4140ralrimiv 3178 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴))
42 eleq2 2898 . . . . 5 (𝑥 = (rank‘𝐴) → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝑦) ∈ (rank‘𝐴)))
4342ralbidv 3194 . . . 4 (𝑥 = (rank‘𝐴) → (∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥 ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴)))
4443onintss 6234 . . 3 ((rank‘𝐴) ∈ On → (∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴)))
451, 41, 44mpsyl 68 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴))
4639, 45eqssd 3981 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wcel 2105  {cab 2796  wral 3135  {crab 3139  wss 3933   cuni 4830   cint 4867  dom cdm 5548  cima 5551  Ord word 6183  Oncon0 6184  Lim wlim 6185  Fun wfun 6342  cfv 6348  𝑅1cr1 9179  rankcrnk 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-r1 9181  df-rank 9182
This theorem is referenced by:  ranksnb  9244  rankonidlem  9245  rankval3  9257  rankunb  9267  rankuni2b  9270  tcrank  9301
  Copyright terms: Public domain W3C validator