Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim Structured version   Visualization version   GIF version

Theorem rankxplim 8694
 Description: The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 8697 for the successor case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxplim ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))

Proof of Theorem rankxplim
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4864 . . . . . . . . . 10 𝑥, 𝑦⟩ ⊆ 𝒫 𝑥, 𝑦
2 vex 3192 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 3192 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3uniop 4942 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {𝑥, 𝑦}
54pweqi 4139 . . . . . . . . . 10 𝒫 𝑥, 𝑦⟩ = 𝒫 {𝑥, 𝑦}
61, 5sseqtri 3621 . . . . . . . . 9 𝑥, 𝑦⟩ ⊆ 𝒫 {𝑥, 𝑦}
7 pwuni 4864 . . . . . . . . . . 11 {𝑥, 𝑦} ⊆ 𝒫 {𝑥, 𝑦}
82, 3unipr 4420 . . . . . . . . . . . 12 {𝑥, 𝑦} = (𝑥𝑦)
98pweqi 4139 . . . . . . . . . . 11 𝒫 {𝑥, 𝑦} = 𝒫 (𝑥𝑦)
107, 9sseqtri 3621 . . . . . . . . . 10 {𝑥, 𝑦} ⊆ 𝒫 (𝑥𝑦)
11 sspwb 4883 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝒫 (𝑥𝑦) ↔ 𝒫 {𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥𝑦))
1210, 11mpbi 220 . . . . . . . . 9 𝒫 {𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥𝑦)
136, 12sstri 3596 . . . . . . . 8 𝑥, 𝑦⟩ ⊆ 𝒫 𝒫 (𝑥𝑦)
142, 3unex 6916 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
1514pwex 4813 . . . . . . . . . 10 𝒫 (𝑥𝑦) ∈ V
1615pwex 4813 . . . . . . . . 9 𝒫 𝒫 (𝑥𝑦) ∈ V
1716rankss 8664 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ⊆ 𝒫 𝒫 (𝑥𝑦) → (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)))
1813, 17ax-mp 5 . . . . . . 7 (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦))
19 rankxplim.1 . . . . . . . . . . 11 𝐴 ∈ V
2019rankel 8654 . . . . . . . . . 10 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
21 rankxplim.2 . . . . . . . . . . 11 𝐵 ∈ V
2221rankel 8654 . . . . . . . . . 10 (𝑦𝐵 → (rank‘𝑦) ∈ (rank‘𝐵))
232, 3, 19, 21rankelun 8687 . . . . . . . . . 10 (((rank‘𝑥) ∈ (rank‘𝐴) ∧ (rank‘𝑦) ∈ (rank‘𝐵)) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
2420, 22, 23syl2an 494 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
2524adantl 482 . . . . . . . 8 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
26 ranklim 8659 . . . . . . . . . 10 (Lim (rank‘(𝐴𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
27 ranklim 8659 . . . . . . . . . 10 (Lim (rank‘(𝐴𝐵)) → ((rank‘𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
2826, 27bitrd 268 . . . . . . . . 9 (Lim (rank‘(𝐴𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
2928adantr 481 . . . . . . . 8 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
3025, 29mpbid 222 . . . . . . 7 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
31 rankon 8610 . . . . . . . 8 (rank‘⟨𝑥, 𝑦⟩) ∈ On
32 rankon 8610 . . . . . . . 8 (rank‘(𝐴𝐵)) ∈ On
33 ontr2 5736 . . . . . . . 8 (((rank‘⟨𝑥, 𝑦⟩) ∈ On ∧ (rank‘(𝐴𝐵)) ∈ On) → (((rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)) ∧ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵))))
3431, 32, 33mp2an 707 . . . . . . 7 (((rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)) ∧ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)))
3518, 30, 34sylancr 694 . . . . . 6 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)))
3631, 32onsucssi 6995 . . . . . 6 ((rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)) ↔ suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
3735, 36sylib 208 . . . . 5 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
3837ralrimivva 2966 . . . 4 (Lim (rank‘(𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
39 fveq2 6153 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (rank‘𝑧) = (rank‘⟨𝑥, 𝑦⟩))
40 suceq 5754 . . . . . . . 8 ((rank‘𝑧) = (rank‘⟨𝑥, 𝑦⟩) → suc (rank‘𝑧) = suc (rank‘⟨𝑥, 𝑦⟩))
4139, 40syl 17 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → suc (rank‘𝑧) = suc (rank‘⟨𝑥, 𝑦⟩))
4241sseq1d 3616 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵))))
4342ralxp 5228 . . . . 5 (∀𝑧 ∈ (𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
4419, 21xpex 6922 . . . . . 6 (𝐴 × 𝐵) ∈ V
4544rankbnd 8683 . . . . 5 (∀𝑧 ∈ (𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4643, 45bitr3i 266 . . . 4 (∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4738, 46sylib 208 . . 3 (Lim (rank‘(𝐴𝐵)) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4847adantr 481 . 2 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4919, 21rankxpl 8690 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))
5049adantl 482 . 2 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))
5148, 50eqssd 3604 1 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  Vcvv 3189   ∪ cun 3557   ⊆ wss 3559  ∅c0 3896  𝒫 cpw 4135  {cpr 4155  ⟨cop 4159  ∪ cuni 4407   × cxp 5077  Oncon0 5687  Lim wlim 5688  suc csuc 5689  ‘cfv 5852  rankcrnk 8578 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-reg 8449  ax-inf2 8490 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-r1 8579  df-rank 8580 This theorem is referenced by:  rankxplim3  8696
 Copyright terms: Public domain W3C validator