MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpsuc Structured version   Visualization version   GIF version

Theorem rankxpsuc 9299
Description: The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 9296 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpsuc (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = suc suc (rank‘(𝐴𝐵)))

Proof of Theorem rankxpsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rankuni 9280 . . . . . . . 8 (rank‘ (𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
2 rankuni 9280 . . . . . . . . 9 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
32unieqi 4839 . . . . . . . 8 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
41, 3eqtri 2841 . . . . . . 7 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
5 unixp 6126 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
65fveq2d 6667 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
74, 6syl5reqr 2868 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
8 suc11reg 9070 . . . . . 6 (suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)) ↔ (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
97, 8sylibr 235 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
109adantl 482 . . . 4 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
11 fvex 6676 . . . . . . . . . . . . . 14 (rank‘(𝐴𝐵)) ∈ V
12 eleq1 2897 . . . . . . . . . . . . . 14 ((rank‘(𝐴𝐵)) = suc 𝐶 → ((rank‘(𝐴𝐵)) ∈ V ↔ suc 𝐶 ∈ V))
1311, 12mpbii 234 . . . . . . . . . . . . 13 ((rank‘(𝐴𝐵)) = suc 𝐶 → suc 𝐶 ∈ V)
14 sucexb 7513 . . . . . . . . . . . . 13 (𝐶 ∈ V ↔ suc 𝐶 ∈ V)
1513, 14sylibr 235 . . . . . . . . . . . 12 ((rank‘(𝐴𝐵)) = suc 𝐶𝐶 ∈ V)
16 nlimsucg 7546 . . . . . . . . . . . 12 (𝐶 ∈ V → ¬ Lim suc 𝐶)
1715, 16syl 17 . . . . . . . . . . 11 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim suc 𝐶)
18 limeq 6196 . . . . . . . . . . 11 ((rank‘(𝐴𝐵)) = suc 𝐶 → (Lim (rank‘(𝐴𝐵)) ↔ Lim suc 𝐶))
1917, 18mtbird 326 . . . . . . . . . 10 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴𝐵)))
20 rankxplim.1 . . . . . . . . . . 11 𝐴 ∈ V
21 rankxplim.2 . . . . . . . . . . 11 𝐵 ∈ V
2220, 21rankxplim2 9297 . . . . . . . . . 10 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))
2319, 22nsyl 142 . . . . . . . . 9 ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴 × 𝐵)))
2420, 21xpex 7465 . . . . . . . . . . . . . 14 (𝐴 × 𝐵) ∈ V
2524rankeq0 9278 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
2625necon3abii 3059 . . . . . . . . . . . 12 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
27 rankon 9212 . . . . . . . . . . . . . . . 16 (rank‘(𝐴 × 𝐵)) ∈ On
2827onordi 6288 . . . . . . . . . . . . . . 15 Ord (rank‘(𝐴 × 𝐵))
29 ordzsl 7549 . . . . . . . . . . . . . . 15 (Ord (rank‘(𝐴 × 𝐵)) ↔ ((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3028, 29mpbi 231 . . . . . . . . . . . . . 14 ((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))
31 3orass 1082 . . . . . . . . . . . . . 14 (((rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))) ↔ ((rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))))
3230, 31mpbi 231 . . . . . . . . . . . . 13 ((rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3332ori 855 . . . . . . . . . . . 12 (¬ (rank‘(𝐴 × 𝐵)) = ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3426, 33sylbi 218 . . . . . . . . . . 11 ((𝐴 × 𝐵) ≠ ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
3534ord 858 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ → (¬ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → Lim (rank‘(𝐴 × 𝐵))))
3635con1d 147 . . . . . . . . 9 ((𝐴 × 𝐵) ≠ ∅ → (¬ Lim (rank‘(𝐴 × 𝐵)) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
3723, 36syl5com 31 . . . . . . . 8 ((rank‘(𝐴𝐵)) = suc 𝐶 → ((𝐴 × 𝐵) ≠ ∅ → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
38 nlimsucg 7546 . . . . . . . . . . . 12 (𝑥 ∈ V → ¬ Lim suc 𝑥)
3938elv 3497 . . . . . . . . . . 11 ¬ Lim suc 𝑥
40 limeq 6196 . . . . . . . . . . 11 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim suc 𝑥))
4139, 40mtbiri 328 . . . . . . . . . 10 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4241rexlimivw 3279 . . . . . . . . 9 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4320, 21rankxplim3 9298 . . . . . . . . 9 (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 × 𝐵)))
4442, 43sylnib 329 . . . . . . . 8 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → ¬ Lim (rank‘(𝐴 × 𝐵)))
4537, 44syl6com 37 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → ((rank‘(𝐴𝐵)) = suc 𝐶 → ¬ Lim (rank‘(𝐴 × 𝐵))))
46 unixp0 6127 . . . . . . . . . . . 12 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
4724uniex 7454 . . . . . . . . . . . . 13 (𝐴 × 𝐵) ∈ V
4847rankeq0 9278 . . . . . . . . . . . 12 ( (𝐴 × 𝐵) = ∅ ↔ (rank‘ (𝐴 × 𝐵)) = ∅)
492eqeq1i 2823 . . . . . . . . . . . 12 ((rank‘ (𝐴 × 𝐵)) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
5046, 48, 493bitri 298 . . . . . . . . . . 11 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
5150necon3abii 3059 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
52 onuni 7497 . . . . . . . . . . . . . . 15 ((rank‘(𝐴 × 𝐵)) ∈ On → (rank‘(𝐴 × 𝐵)) ∈ On)
5327, 52ax-mp 5 . . . . . . . . . . . . . 14 (rank‘(𝐴 × 𝐵)) ∈ On
5453onordi 6288 . . . . . . . . . . . . 13 Ord (rank‘(𝐴 × 𝐵))
55 ordzsl 7549 . . . . . . . . . . . . 13 (Ord (rank‘(𝐴 × 𝐵)) ↔ ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
5654, 55mpbi 231 . . . . . . . . . . . 12 ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))
57 3orass 1082 . . . . . . . . . . . 12 (( (rank‘(𝐴 × 𝐵)) = ∅ ∨ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))) ↔ ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵)))))
5856, 57mpbi 231 . . . . . . . . . . 11 ( (rank‘(𝐴 × 𝐵)) = ∅ ∨ (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
5958ori 855 . . . . . . . . . 10 (rank‘(𝐴 × 𝐵)) = ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
6051, 59sylbi 218 . . . . . . . . 9 ((𝐴 × 𝐵) ≠ ∅ → (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 ∨ Lim (rank‘(𝐴 × 𝐵))))
6160ord 858 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → (¬ ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → Lim (rank‘(𝐴 × 𝐵))))
6261con1d 147 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → (¬ Lim (rank‘(𝐴 × 𝐵)) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
6345, 62syld 47 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → ((rank‘(𝐴𝐵)) = suc 𝐶 → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥))
6463impcom 408 . . . . 5 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥)
65 onsucuni2 7538 . . . . . . 7 (( (rank‘(𝐴 × 𝐵)) ∈ On ∧ (rank‘(𝐴 × 𝐵)) = suc 𝑥) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6653, 65mpan 686 . . . . . 6 ( (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6766rexlimivw 3279 . . . . 5 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6864, 67syl 17 . . . 4 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
6910, 68eqtrd 2853 . . 3 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
70 suc11reg 9070 . . 3 (suc suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)) ↔ suc (rank‘(𝐴𝐵)) = (rank‘(𝐴 × 𝐵)))
7169, 70sylibr 235 . 2 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc suc (rank‘(𝐴𝐵)) = suc (rank‘(𝐴 × 𝐵)))
7237imp 407 . . 3 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → ∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥)
73 onsucuni2 7538 . . . . 5 (((rank‘(𝐴 × 𝐵)) ∈ On ∧ (rank‘(𝐴 × 𝐵)) = suc 𝑥) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7427, 73mpan 686 . . . 4 ((rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7574rexlimivw 3279 . . 3 (∃𝑥 ∈ On (rank‘(𝐴 × 𝐵)) = suc 𝑥 → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7672, 75syl 17 . 2 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → suc (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵)))
7771, 76eqtr2d 2854 1 (((rank‘(𝐴𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = suc suc (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3o 1078   = wceq 1528  wcel 2105  wne 3013  wrex 3136  Vcvv 3492  cun 3931  c0 4288   cuni 4830   × cxp 5546  Ord word 6183  Oncon0 6184  Lim wlim 6185  suc csuc 6186  cfv 6348  rankcrnk 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-reg 9044  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-r1 9181  df-rank 9182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator