MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbropap Structured version   Visualization version   GIF version

Theorem rbropap 4981
Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.)
Hypotheses
Ref Expression
rbropapd.1 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
rbropapd.2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
Assertion
Ref Expression
rbropap ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))
Distinct variable groups:   𝑓,𝐹,𝑝   𝑃,𝑓,𝑝   𝑓,𝑊,𝑝   𝜒,𝑓,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝜓(𝑓,𝑝)   𝑀(𝑓,𝑝)   𝑋(𝑓,𝑝)   𝑌(𝑓,𝑝)

Proof of Theorem rbropap
StepHypRef Expression
1 rbropapd.1 . . 3 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
2 rbropapd.2 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
31, 2rbropapd 4980 . 2 (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
433impib 1259 1 ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  {copab 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679
This theorem is referenced by:  2rbropap  4982  brfvopabrbr  6241
  Copyright terms: Public domain W3C validator