Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rclexi Structured version   Visualization version   GIF version

Theorem rclexi 39853
Description: The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
rclexi.1 𝐴𝑉
Assertion
Ref Expression
rclexi {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rclexi
StepHypRef Expression
1 ssun1 4145 . 2 𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2 dmun 5772 . . . . . . 7 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
3 dmresi 5914 . . . . . . . 8 dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
43uneq2i 4133 . . . . . . 7 (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
5 ssun1 4145 . . . . . . . 8 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 ssequn1 4153 . . . . . . . 8 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
75, 6mpbi 231 . . . . . . 7 (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
82, 4, 73eqtri 2845 . . . . . 6 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
9 rnun 5997 . . . . . . 7 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
10 rnresi 5936 . . . . . . . 8 ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1110uneq2i 4133 . . . . . . 7 (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
12 ssun2 4146 . . . . . . . 8 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
13 ssequn1 4153 . . . . . . . 8 (ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
1412, 13mpbi 231 . . . . . . 7 (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
159, 11, 143eqtri 2845 . . . . . 6 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
168, 15uneq12i 4134 . . . . 5 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴))
17 unidm 4125 . . . . 5 ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1816, 17eqtri 2841 . . . 4 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴)
1918reseq2i 5843 . . 3 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
20 ssun2 4146 . . 3 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2119, 20eqsstri 3998 . 2 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
22 rclexi.1 . . . . . 6 𝐴𝑉
2322elexi 3511 . . . . 5 𝐴 ∈ V
24 dmexg 7602 . . . . . . . 8 (𝐴𝑉 → dom 𝐴 ∈ V)
25 rnexg 7603 . . . . . . . 8 (𝐴𝑉 → ran 𝐴 ∈ V)
26 unexg 7461 . . . . . . . 8 ((dom 𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 ∪ ran 𝐴) ∈ V)
2724, 25, 26syl2anc 584 . . . . . . 7 (𝐴𝑉 → (dom 𝐴 ∪ ran 𝐴) ∈ V)
2827resiexd 6970 . . . . . 6 (𝐴𝑉 → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V)
2922, 28ax-mp 5 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V
3023, 29unex 7458 . . . 4 (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∈ V
31 dmeq 5765 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
32 rneq 5799 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3331, 32uneq12d 4137 . . . . . . 7 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3433reseq2d 5846 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
35 id 22 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3634, 35sseq12d 3997 . . . . 5 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3736cleq2lem 39846 . . . 4 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ((𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
3830, 37spcev 3604 . . 3 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
39 intexab 5233 . . 3 (∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
4038, 39sylib 219 . 2 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
411, 21, 40mp2an 688 1 {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wex 1771  wcel 2105  {cab 2796  Vcvv 3492  cun 3931  wss 3933   cint 4867   I cid 5452  dom cdm 5548  ran crn 5549  cres 5550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator