MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rddif Structured version   Visualization version   GIF version

Theorem rddif 14014
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
rddif (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))

Proof of Theorem rddif
StepHypRef Expression
1 halfcn 11191 . . . . . . . 8 (1 / 2) ∈ ℂ
212timesi 11091 . . . . . . 7 (2 · (1 / 2)) = ((1 / 2) + (1 / 2))
3 2cn 11035 . . . . . . . 8 2 ∈ ℂ
4 2ne0 11057 . . . . . . . 8 2 ≠ 0
53, 4recidi 10700 . . . . . . 7 (2 · (1 / 2)) = 1
62, 5eqtr3i 2645 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
76oveq2i 6615 . . . . 5 ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1)
8 recn 9970 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
108, 9, 9nppcan3d 10363 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2)))
117, 10syl5eqr 2669 . . . 4 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2)))
12 halfre 11190 . . . . . 6 (1 / 2) ∈ ℝ
13 readdcl 9963 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
1412, 13mpan2 706 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
15 fllep1 12542 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1711, 16eqbrtrd 4635 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
18 resubcl 10289 . . . . 5 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ)
1912, 18mpan2 706 . . . 4 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ)
20 reflcl 12537 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2114, 20syl 17 . . . 4 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
22 1red 9999 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
2319, 21, 22leadd1d 10565 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)))
2417, 23mpbird 247 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))))
25 flle 12540 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
2614, 25syl 17 . 2 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
27 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2812a1i 11 . . 3 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
29 absdifle 13992 . . 3 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3021, 27, 28, 29syl3anc 1323 . 2 (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3124, 26, 30mpbir2and 956 1 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  1c1 9881   + caddc 9883   · cmul 9885  cle 10019  cmin 10210   / cdiv 10628  2c2 11014  cfl 12531  abscabs 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910
This theorem is referenced by:  absrdbnd  14015  rddif2  32106  dnibndlem11  32117  knoppcnlem4  32125  cntotbnd  33224
  Copyright terms: Public domain W3C validator