MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdg0g Structured version   Visualization version   GIF version

Theorem rdg0g 7383
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem rdg0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 7368 . . . 4 (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴))
21fveq1d 6086 . . 3 (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅))
3 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2620 . 2 (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴))
5 vex 3171 . . 3 𝑥 ∈ V
65rdg0 7377 . 2 (rec(𝐹, 𝑥)‘∅) = 𝑥
74, 6vtoclg 3234 1 (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975  c0 3869  cfv 5786  reccrdg 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366
This theorem is referenced by:  fr0g  7391  oa0  7456  findreccl  31424
  Copyright terms: Public domain W3C validator