MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq1 Structured version   Visualization version   GIF version

Theorem rdgeq1 7371
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))

Proof of Theorem rdgeq1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6086 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(𝑔 dom 𝑔)) = (𝐺‘(𝑔 dom 𝑔)))
21ifeq2d 4054 . . . . 5 (𝐹 = 𝐺 → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))
32ifeq2d 4054 . . . 4 (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))
43mpteq2dv 4667 . . 3 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
5 recseq 7334 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
64, 5syl 17 . 2 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
7 df-rdg 7370 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
8 df-rdg 7370 . 2 rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
96, 7, 83eqtr4g 2668 1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  Vcvv 3172  c0 3873  ifcif 4035   cuni 4366  cmpt 4637  dom cdm 5027  ran crn 5028  Lim wlim 5626  cfv 5789  recscrecs 7331  reccrdg 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-xp 5033  df-cnv 5035  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-iota 5753  df-fv 5797  df-wrecs 7271  df-recs 7332  df-rdg 7370
This theorem is referenced by:  rdgeq12  7373  rdgsucmpt2  7390  frsucmpt2  7399  seqomlem0  7408  omv  7456  oev  7458  dffi3  8197  hsmex  9114  axdc  9203  seqeq2  12624  seqval  12631  trpredlem1  30764  trpredtr  30767  trpredmintr  30768  neibastop2  31319  dffinxpf  32181  finxpeq1  32182
  Copyright terms: Public domain W3C validator