MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq2 Structured version   Visualization version   GIF version

Theorem rdgeq2 8051
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ifeq1 4474 . . . 4 (𝐴 = 𝐵 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
21mpteq2dv 5165 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 recseq 8013 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
42, 3syl 17 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
5 df-rdg 8049 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
6 df-rdg 8049 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
74, 5, 63eqtr4g 2884 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  Vcvv 3497  c0 4294  ifcif 4470   cuni 4841  cmpt 5149  dom cdm 5558  ran crn 5559  Lim wlim 6195  cfv 6358  recscrecs 8010  reccrdg 8048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-xp 5564  df-cnv 5566  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-iota 6317  df-fv 6366  df-wrecs 7950  df-recs 8011  df-rdg 8049
This theorem is referenced by:  rdgeq12  8052  rdg0g  8066  oav  8139  itunifval  9841  hsmex  9857  ltweuz  13332  seqeq1  13375  dfrdg2  33044  trpredeq3  33065  finxpeq2  34672  finxpreclem6  34681  finxpsuclem  34682
  Copyright terms: Public domain W3C validator