Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Visualization version   GIF version

Theorem rdglem1 7556
 Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Distinct variable groups:   𝑥,𝑦,𝑓,𝑔,𝑧,𝐺   𝑦,𝑤,𝐺,𝑧,𝑔

Proof of Theorem rdglem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem3 7519 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))}
3 fveq2 6229 . . . . . . 7 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
4 reseq2 5423 . . . . . . . 8 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
54fveq2d 6233 . . . . . . 7 (𝑣 = 𝑤 → (𝐺‘(𝑔𝑣)) = (𝐺‘(𝑔𝑤)))
63, 5eqeq12d 2666 . . . . . 6 (𝑣 = 𝑤 → ((𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
76cbvralv 3201 . . . . 5 (∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
87anbi2i 730 . . . 4 ((𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
98rexbii 3070 . . 3 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
109abbii 2768 . 2 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
112, 10eqtri 2673 1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1523  {cab 2637  ∀wral 2941  ∃wrex 2942   ↾ cres 5145  Oncon0 5761   Fn wfn 5921  ‘cfv 5926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934 This theorem is referenced by:  rdgseg  7563
 Copyright terms: Public domain W3C validator