Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Structured version   Visualization version   GIF version

Theorem rdgprc0 33040
Description: The value of the recursive definition generator at when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)

Proof of Theorem rdgprc0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0elon 6246 . . . 4 ∅ ∈ On
2 rdgval 8058 . . . 4 (∅ ∈ On → (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)))
31, 2ax-mp 5 . . 3 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅))
4 res0 5859 . . . 4 (rec(𝐹, 𝐼) ↾ ∅) = ∅
54fveq2i 6675 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
63, 5eqtri 2846 . 2 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
7 eqeq1 2827 . . . . . . . 8 (𝑔 = ∅ → (𝑔 = ∅ ↔ ∅ = ∅))
8 dmeq 5774 . . . . . . . . . 10 (𝑔 = ∅ → dom 𝑔 = dom ∅)
9 limeq 6205 . . . . . . . . . 10 (dom 𝑔 = dom ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
108, 9syl 17 . . . . . . . . 9 (𝑔 = ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
11 rneq 5808 . . . . . . . . . 10 (𝑔 = ∅ → ran 𝑔 = ran ∅)
1211unieqd 4854 . . . . . . . . 9 (𝑔 = ∅ → ran 𝑔 = ran ∅)
13 id 22 . . . . . . . . . . 11 (𝑔 = ∅ → 𝑔 = ∅)
148unieqd 4854 . . . . . . . . . . 11 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1513, 14fveq12d 6679 . . . . . . . . . 10 (𝑔 = ∅ → (𝑔 dom 𝑔) = (∅‘ dom ∅))
1615fveq2d 6676 . . . . . . . . 9 (𝑔 = ∅ → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘(∅‘ dom ∅)))
1710, 12, 16ifbieq12d 4496 . . . . . . . 8 (𝑔 = ∅ → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅))))
187, 17ifbieq2d 4494 . . . . . . 7 (𝑔 = ∅ → if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))))
1918eleq1d 2899 . . . . . 6 (𝑔 = ∅ → (if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V ↔ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
20 eqid 2823 . . . . . . 7 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
2120dmmpt 6096 . . . . . 6 dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = {𝑔 ∈ V ∣ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V}
2219, 21elrab2 3685 . . . . 5 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) ↔ (∅ ∈ V ∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
23 eqid 2823 . . . . . . . . 9 ∅ = ∅
2423iftruei 4476 . . . . . . . 8 if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) = 𝐼
2524eleq1i 2905 . . . . . . 7 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V ↔ 𝐼 ∈ V)
2625biimpi 218 . . . . . 6 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V → 𝐼 ∈ V)
2726adantl 484 . . . . 5 ((∅ ∈ V ∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V) → 𝐼 ∈ V)
2822, 27sylbi 219 . . . 4 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → 𝐼 ∈ V)
2928con3i 157 . . 3 𝐼 ∈ V → ¬ ∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
30 ndmfv 6702 . . 3 (¬ ∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
3129, 30syl 17 . 2 𝐼 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
326, 31syl5eq 2870 1 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  ifcif 4469   cuni 4840  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  Oncon0 6193  Lim wlim 6194  cfv 6357  reccrdg 8047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  rdgprc  33041
  Copyright terms: Public domain W3C validator