Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdivmuldivd Structured version   Visualization version   GIF version

Theorem rdivmuldivd 29765
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
rdivmuldivd.p · = (.r𝑅)
rdivmuldivd.r (𝜑𝑅 ∈ CRing)
rdivmuldivd.a (𝜑𝑋𝐵)
rdivmuldivd.b (𝜑𝑌𝑈)
rdivmuldivd.c (𝜑𝑍𝐵)
rdivmuldivd.d (𝜑𝑊𝑈)
Assertion
Ref Expression
rdivmuldivd (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 rdivmuldivd.a . . . 4 (𝜑𝑋𝐵)
2 rdivmuldivd.b . . . 4 (𝜑𝑌𝑈)
3 dvrdir.b . . . . . 6 𝐵 = (Base‘𝑅)
4 rdivmuldivd.p . . . . . 6 · = (.r𝑅)
5 dvrdir.u . . . . . 6 𝑈 = (Unit‘𝑅)
6 eqid 2620 . . . . . 6 (invr𝑅) = (invr𝑅)
7 dvrdir.t . . . . . 6 / = (/r𝑅)
83, 4, 5, 6, 7dvrval 18666 . . . . 5 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
98oveq1d 6650 . . . 4 ((𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
101, 2, 9syl2anc 692 . . 3 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
11 rdivmuldivd.r . . . . 5 (𝜑𝑅 ∈ CRing)
12 crngring 18539 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
143, 5unitss 18641 . . . . 5 𝑈𝐵
155, 6unitinvcl 18655 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
1613, 2, 15syl2anc 692 . . . . 5 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝑈)
1714, 16sseldi 3593 . . . 4 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 rdivmuldivd.c . . . . 5 (𝜑𝑍𝐵)
19 rdivmuldivd.d . . . . 5 (𝜑𝑊𝑈)
203, 5, 7dvrcl 18667 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1324 . . . 4 (𝜑 → (𝑍 / 𝑊) ∈ 𝐵)
223, 4ringass 18545 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
2313, 1, 17, 21, 22syl13anc 1326 . . 3 (𝜑 → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
243, 4crngcom 18543 . . . . 5 ((𝑅 ∈ CRing ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2511, 17, 21, 24syl3anc 1324 . . . 4 (𝜑 → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2625oveq2d 6651 . . 3 (𝜑 → (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
2710, 23, 263eqtrd 2658 . 2 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
28 eqid 2620 . . . . . . . 8 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
295, 28unitgrp 18648 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
3013, 29syl 17 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
315, 28unitgrpbas 18647 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
32 eqid 2620 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
335, 28, 6invrfval 18654 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
3431, 32, 33grpinvadd 17474 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑊𝑈) → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
3530, 2, 19, 34syl3anc 1324 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
36 fvex 6188 . . . . . . . . . . 11 (Unit‘𝑅) ∈ V
375, 36eqeltri 2695 . . . . . . . . . 10 𝑈 ∈ V
38 eqid 2620 . . . . . . . . . . 11 (𝑅s 𝑈) = (𝑅s 𝑈)
39 eqid 2620 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4038, 39mgpress 18481 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4113, 37, 40sylancl 693 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4241fveq2d 6182 . . . . . . . 8 (𝜑 → (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
43 eqid 2620 . . . . . . . . 9 (mulGrp‘(𝑅s 𝑈)) = (mulGrp‘(𝑅s 𝑈))
4438, 4ressmulr 15987 . . . . . . . . . 10 (𝑈 ∈ V → · = (.r‘(𝑅s 𝑈)))
4537, 44ax-mp 5 . . . . . . . . 9 · = (.r‘(𝑅s 𝑈))
4643, 45mgpplusg 18474 . . . . . . . 8 · = (+g‘(mulGrp‘(𝑅s 𝑈)))
4742, 46syl6reqr 2673 . . . . . . 7 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
4847oveqd 6652 . . . . . 6 (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))
4948fveq2d 6182 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
5047oveqd 6652 . . . . 5 (𝜑 → (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
5135, 49, 503eqtr4d 2664 . . . 4 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)))
5251oveq2d 6651 . . 3 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
533, 4ringcl 18542 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5413, 1, 18, 53syl3anc 1324 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
555, 4unitmulcl 18645 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑊𝑈) → (𝑌 · 𝑊) ∈ 𝑈)
5613, 2, 19, 55syl3anc 1324 . . . 4 (𝜑 → (𝑌 · 𝑊) ∈ 𝑈)
573, 4, 5, 6, 7dvrval 18666 . . . 4 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑊) ∈ 𝑈) → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
5854, 56, 57syl2anc 692 . . 3 (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
595, 6unitinvcl 18655 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑊𝑈) → ((invr𝑅)‘𝑊) ∈ 𝑈)
6013, 19, 59syl2anc 692 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝑈)
6114, 60sseldi 3593 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝐵)
623, 4ringass 18545 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6313, 1, 18, 61, 62syl13anc 1326 . . . . . 6 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
643, 4, 5, 6, 7dvrval 18666 . . . . . . . 8 ((𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6518, 19, 64syl2anc 692 . . . . . . 7 (𝜑 → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6665oveq2d 6651 . . . . . 6 (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6763, 66eqtr4d 2657 . . . . 5 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊)))
6867oveq1d 6650 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)))
693, 4ringass 18545 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
7013, 54, 61, 17, 69syl13anc 1326 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
713, 4ringass 18545 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7213, 1, 21, 17, 71syl13anc 1326 . . . 4 (𝜑 → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7368, 70, 723eqtr3rd 2663 . . 3 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
7452, 58, 733eqtr4rd 2665 . 2 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
7527, 74eqtrd 2654 1 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  cfv 5876  (class class class)co 6635  Basecbs 15838  s cress 15839  +gcplusg 15922  .rcmulr 15923  Grpcgrp 17403  mulGrpcmgp 18470  Ringcrg 18528  CRingccrg 18529  Unitcui 18620  invrcinvr 18652  /rcdvr 18663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-cmn 18176  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664
This theorem is referenced by:  qqhrhm  30007
  Copyright terms: Public domain W3C validator