MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Visualization version   GIF version

Theorem rebtwnz 12350
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 renegcl 10951 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zbtwnre 12349 . . 3 (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
4 znegcl 12020 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12020 . . . . 5 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 zcn 11989 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 11989 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 10941 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥𝑥 = -𝑦))
96, 7, 8syl2an 597 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥𝑥 = -𝑦))
105, 9reuhyp 5323 . . . 4 (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥)
11 breq2 5072 . . . . 5 (𝑦 = -𝑥 → (-𝐴𝑦 ↔ -𝐴 ≤ -𝑥))
12 breq1 5071 . . . . 5 (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1)))
1311, 12anbi12d 632 . . . 4 (𝑦 = -𝑥 → ((-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
144, 10, 13reuxfr1 3745 . . 3 (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))
15 zre 11988 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
16 leneg 11145 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1716ancoms 461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
18 peano2rem 10955 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
19 ltneg 11142 . . . . . . . . 9 (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
2018, 19sylan 582 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
21 1re 10643 . . . . . . . . 9 1 ∈ ℝ
22 ltsubadd 11112 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
2321, 22mp3an2 1445 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
24 recn 10629 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
25 ax-1cn 10597 . . . . . . . . . . 11 1 ∈ ℂ
26 negsubdi 10944 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
2724, 25, 26sylancl 588 . . . . . . . . . 10 (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1))
2827adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1))
2928breq2d 5080 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1)))
3020, 23, 293bitr3d 311 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1)))
3117, 30anbi12d 632 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3215, 31sylan2 594 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3332bicomd 225 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3433reubidva 3390 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
3514, 34syl5bb 285 . 2 (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
363, 35mpbid 234 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  ∃!wreu 3142   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  -cneg 10873  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247
This theorem is referenced by:  flcl  13168  fllelt  13170  flflp1  13180  flbi  13189  ltflcei  34882
  Copyright terms: Public domain W3C validator