MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recan Structured version   Visualization version   GIF version

Theorem recan 14275
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 10186 . . . . 5 1 ∈ ℂ
2 oveq1 6820 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
32fveq2d 6356 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(1 · 𝐴)))
4 oveq1 6820 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
54fveq2d 6356 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(1 · 𝐵)))
63, 5eqeq12d 2775 . . . . . 6 (𝑥 = 1 → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
76rspcv 3445 . . . . 5 (1 ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
81, 7ax-mp 5 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵)))
9 negicn 10474 . . . . . 6 -i ∈ ℂ
10 oveq1 6820 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐴) = (-i · 𝐴))
1110fveq2d 6356 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(-i · 𝐴)))
12 oveq1 6820 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐵) = (-i · 𝐵))
1312fveq2d 6356 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(-i · 𝐵)))
1411, 13eqeq12d 2775 . . . . . . 7 (𝑥 = -i → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
1514rspcv 3445 . . . . . 6 (-i ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
169, 15ax-mp 5 . . . . 5 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵)))
1716oveq2d 6829 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (i · (ℜ‘(-i · 𝐴))) = (i · (ℜ‘(-i · 𝐵))))
188, 17oveq12d 6831 . . 3 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
19 replim 14055 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 mulid2 10230 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2120eqcomd 2766 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = (1 · 𝐴))
2221fveq2d 6356 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℜ‘(1 · 𝐴)))
23 imre 14047 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2423oveq2d 6829 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) = (i · (ℜ‘(-i · 𝐴))))
2522, 24oveq12d 6831 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
2619, 25eqtrd 2794 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
27 replim 14055 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
28 mulid2 10230 . . . . . . . 8 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2928eqcomd 2766 . . . . . . 7 (𝐵 ∈ ℂ → 𝐵 = (1 · 𝐵))
3029fveq2d 6356 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) = (ℜ‘(1 · 𝐵)))
31 imre 14047 . . . . . . 7 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(-i · 𝐵)))
3231oveq2d 6829 . . . . . 6 (𝐵 ∈ ℂ → (i · (ℑ‘𝐵)) = (i · (ℜ‘(-i · 𝐵))))
3330, 32oveq12d 6831 . . . . 5 (𝐵 ∈ ℂ → ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3427, 33eqtrd 2794 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3526, 34eqeqan12d 2776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵))))))
3618, 35syl5ibr 236 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → 𝐴 = 𝐵))
37 oveq2 6821 . . . 4 (𝐴 = 𝐵 → (𝑥 · 𝐴) = (𝑥 · 𝐵))
3837fveq2d 6356 . . 3 (𝐴 = 𝐵 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
3938ralrimivw 3105 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
4036, 39impbid1 215 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  cfv 6049  (class class class)co 6813  cc 10126  1c1 10129  ici 10130   + caddc 10131   · cmul 10133  -cneg 10459  cre 14036  cim 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-cj 14038  df-re 14039  df-im 14040
This theorem is referenced by:  lnopunilem2  29179
  Copyright terms: Public domain W3C validator