Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  recclnq Structured version   Visualization version   GIF version

Theorem recclnq 9826
 Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
StepHypRef Expression
1 recidnq 9825 . . . 4 (𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
2 1nq 9788 . . . 4 1QQ
31, 2syl6eqel 2738 . . 3 (𝐴Q → (𝐴 ·Q (*Q𝐴)) ∈ Q)
4 mulnqf 9809 . . . . 5 ·Q :(Q × Q)⟶Q
54fdmi 6090 . . . 4 dom ·Q = (Q × Q)
6 0nnq 9784 . . . 4 ¬ ∅ ∈ Q
75, 6ndmovrcl 6862 . . 3 ((𝐴 ·Q (*Q𝐴)) ∈ Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
83, 7syl 17 . 2 (𝐴Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
98simprd 478 1 (𝐴Q → (*Q𝐴) ∈ Q)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 2030   × cxp 5141  ‘cfv 5926  (class class class)co 6690  Qcnq 9712  1Qc1q 9713   ·Q cmq 9716  *Qcrq 9717 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ni 9732  df-mi 9734  df-lti 9735  df-mpq 9769  df-enq 9771  df-nq 9772  df-erq 9773  df-mq 9775  df-1nq 9776  df-rq 9777 This theorem is referenced by:  recrecnq  9827  dmrecnq  9828  halfnq  9836  ltrnq  9839  mulclprlem  9879  prlem934  9893  prlem936  9907  reclem2pr  9908  reclem3pr  9909  reclem4pr  9910
 Copyright terms: Public domain W3C validator