MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Visualization version   GIF version

Theorem recld2 22357
Description: The real numbers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
recld2 ℝ ∈ (Clsd‘𝐽)

Proof of Theorem recld2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3698 . . 3 (ℂ ∖ ℝ) ⊆ ℂ
2 eldifi 3693 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → 𝑥 ∈ ℂ)
32imcld 13729 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℝ)
43recnd 9924 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℂ)
5 eldifn 3694 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
6 reim0b 13653 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
72, 6syl 17 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
87necon3bbid 2818 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
95, 8mpbid 220 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ≠ 0)
104, 9absrpcld 13981 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ+)
11 cnxmet 22318 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1211a1i 11 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
134abscld 13969 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
1413rexrd 9945 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ*)
15 elbl 21944 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
1612, 2, 14, 15syl3anc 1317 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
17 simprl 789 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ)
182adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
19 simpr 475 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2019recnd 9924 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
2118, 20imsubd 13751 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦)))
22 reim0 13652 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (ℑ‘𝑦) = 0)
2322adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
2423oveq2d 6543 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0))
254adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
2625subid1d 10232 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥))
2721, 24, 263eqtrd 2647 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = (ℑ‘𝑥))
2827fveq2d 6092 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) = (abs‘(ℑ‘𝑥)))
2918, 20subcld 10243 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℂ)
30 absimle 13843 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦) ∈ ℂ → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3129, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3228, 31eqbrtrrd 4601 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)))
3325abscld 13969 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
3429abscld 13969 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) ∈ ℝ)
3533, 34lenltd 10034 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)) ↔ ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥))))
3632, 35mpbid 220 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥)))
37 eqid 2609 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
3837cnmetdval 22316 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
3918, 20, 38syl2anc 690 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
4039breq1d 4587 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) ↔ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥))))
4136, 40mtbird 313 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))
4241ex 448 . . . . . . . . . . . 12 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ ℝ → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))
4342con2d 127 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4443adantr 479 . . . . . . . . . 10 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4544impr 646 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ)
4617, 45eldifd 3550 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖ ℝ))
4746ex 448 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4816, 47sylbid 228 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4948ssrdv 3573 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ))
50 oveq2 6535 . . . . . . 7 (𝑦 = (abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))))
5150sseq1d 3594 . . . . . 6 (𝑦 = (abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ) ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)))
5251rspcev 3281 . . . . 5 (((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5310, 49, 52syl2anc 690 . . . 4 (𝑥 ∈ (ℂ ∖ ℝ) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5453rgen 2905 . . 3 𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)
55 recld2.1 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
5655cnfldtopn 22327 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
5756elmopn2 22001 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))))
5811, 57ax-mp 5 . . 3 ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)))
591, 54, 58mpbir2an 956 . 2 (ℂ ∖ ℝ) ∈ 𝐽
6055cnfldtop 22329 . . 3 𝐽 ∈ Top
61 ax-resscn 9849 . . 3 ℝ ⊆ ℂ
6256mopnuni 21997 . . . . 5 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ℂ = 𝐽)
6311, 62ax-mp 5 . . . 4 ℂ = 𝐽
6463iscld2 20584 . . 3 ((𝐽 ∈ Top ∧ ℝ ⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽))
6560, 61, 64mp2an 703 . 2 (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽)
6659, 65mpbir 219 1 ℝ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  cdif 3536  wss 3539   cuni 4366   class class class wbr 4577  ccom 5032  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  *cxr 9929   < clt 9930  cle 9931  cmin 10117  +crp 11664  cim 13632  abscabs 13768  TopOpenctopn 15851  ∞Metcxmt 19498  ballcbl 19500  fldccnfld 19513  Topctop 20459  Clsdccld 20572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-fz 12153  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-plusg 15727  df-mulr 15728  df-starv 15729  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-rest 15852  df-topn 15853  df-topgen 15873  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-xms 21876  df-ms 21877
This theorem is referenced by:  zcld2  22358  rellycmp  22495  recmet  22845  ishl2  22891  recms  22893  logdmopn  24112  dvasin  32462  dvacos  32463  dvreasin  32464  dvreacos  32465
  Copyright terms: Public domain W3C validator