Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  recnnltrp Structured version   Visualization version   GIF version

Theorem recnnltrp 41637
Description: 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
recnnltrp.1 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
Assertion
Ref Expression
recnnltrp (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))

Proof of Theorem recnnltrp
StepHypRef Expression
1 recnnltrp.1 . . 3 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
2 rpreccl 12409 . . . . . 6 (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ+)
32rpred 12425 . . . . 5 (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ)
42rpge0d 12429 . . . . 5 (𝐸 ∈ ℝ+ → 0 ≤ (1 / 𝐸))
5 flge0nn0 13184 . . . . 5 (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0)
63, 4, 5syl2anc 586 . . . 4 (𝐸 ∈ ℝ+ → (⌊‘(1 / 𝐸)) ∈ ℕ0)
7 nn0p1nn 11930 . . . 4 ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
86, 7syl 17 . . 3 (𝐸 ∈ ℝ+ → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
91, 8eqeltrid 2917 . 2 (𝐸 ∈ ℝ+𝑁 ∈ ℕ)
10 flltp1 13164 . . . . . 6 ((1 / 𝐸) ∈ ℝ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1))
113, 10syl 17 . . . . 5 (𝐸 ∈ ℝ+ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1))
1211, 1breqtrrdi 5101 . . . 4 (𝐸 ∈ ℝ+ → (1 / 𝐸) < 𝑁)
139nnrpd 12423 . . . . 5 (𝐸 ∈ ℝ+𝑁 ∈ ℝ+)
142, 13ltrecd 12443 . . . 4 (𝐸 ∈ ℝ+ → ((1 / 𝐸) < 𝑁 ↔ (1 / 𝑁) < (1 / (1 / 𝐸))))
1512, 14mpbid 234 . . 3 (𝐸 ∈ ℝ+ → (1 / 𝑁) < (1 / (1 / 𝐸)))
16 rpcn 12393 . . . 4 (𝐸 ∈ ℝ+𝐸 ∈ ℂ)
17 rpne0 12399 . . . 4 (𝐸 ∈ ℝ+𝐸 ≠ 0)
1816, 17recrecd 11407 . . 3 (𝐸 ∈ ℝ+ → (1 / (1 / 𝐸)) = 𝐸)
1915, 18breqtrd 5085 . 2 (𝐸 ∈ ℝ+ → (1 / 𝑁) < 𝐸)
209, 19jca 514 1 (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670   / cdiv 11291  cn 11632  0cn0 11891  +crp 12383  cfl 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156
This theorem is referenced by:  vonioolem1  42955
  Copyright terms: Public domain W3C validator