MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recosf1o Structured version   Visualization version   GIF version

Theorem recosf1o 24480
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
recosf1o (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)

Proof of Theorem recosf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 15054 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 6206 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 0re 10232 . . . . . . 7 0 ∈ ℝ
5 pire 24409 . . . . . . 7 π ∈ ℝ
6 iccssre 12448 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
74, 5, 6mp2an 710 . . . . . 6 (0[,]π) ⊆ ℝ
8 ax-resscn 10185 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3753 . . . . 5 (0[,]π) ⊆ ℂ
10 fnssres 6165 . . . . 5 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
113, 9, 10mp2an 710 . . . 4 (cos ↾ (0[,]π)) Fn (0[,]π)
12 fvres 6368 . . . . . 6 (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) = (cos‘𝑥))
137sseli 3740 . . . . . . 7 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
14 cosbnd2 15112 . . . . . . 7 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ (-1[,]1))
1513, 14syl 17 . . . . . 6 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ (-1[,]1))
1612, 15eqeltrd 2839 . . . . 5 (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1))
1716rgen 3060 . . . 4 𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)
18 ffnfv 6551 . . . 4 ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ↔ ((cos ↾ (0[,]π)) Fn (0[,]π) ∧ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)))
1911, 17, 18mpbir2an 993 . . 3 (cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1)
20 fvres 6368 . . . . . 6 (𝑦 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑦) = (cos‘𝑦))
2112, 20eqeqan12d 2776 . . . . 5 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
22 cos11 24478 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2322biimprd 238 . . . . 5 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2421, 23sylbid 230 . . . 4 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦))
2524rgen2a 3115 . . 3 𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)
26 dff13 6675 . . 3 ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)))
2719, 25, 26mpbir2an 993 . 2 (cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1)
284a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → 0 ∈ ℝ)
295a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → π ∈ ℝ)
30 neg1rr 11317 . . . . . . . 8 -1 ∈ ℝ
31 1re 10231 . . . . . . . 8 1 ∈ ℝ
3230, 31elicc2i 12432 . . . . . . 7 (𝑥 ∈ (-1[,]1) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥𝑥 ≤ 1))
3332simp1bi 1140 . . . . . 6 (𝑥 ∈ (-1[,]1) → 𝑥 ∈ ℝ)
34 pipos 24411 . . . . . . 7 0 < π
3534a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → 0 < π)
369a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → (0[,]π) ⊆ ℂ)
37 coscn 24398 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3837a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → cos ∈ (ℂ–cn→ℂ))
397sseli 3740 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4039recoscld 15073 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4140adantl 473 . . . . . 6 ((𝑥 ∈ (-1[,]1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
42 cospi 24423 . . . . . . . 8 (cos‘π) = -1
4332simp2bi 1141 . . . . . . . 8 (𝑥 ∈ (-1[,]1) → -1 ≤ 𝑥)
4442, 43syl5eqbr 4839 . . . . . . 7 (𝑥 ∈ (-1[,]1) → (cos‘π) ≤ 𝑥)
4532simp3bi 1142 . . . . . . . 8 (𝑥 ∈ (-1[,]1) → 𝑥 ≤ 1)
46 cos0 15079 . . . . . . . 8 (cos‘0) = 1
4745, 46syl6breqr 4846 . . . . . . 7 (𝑥 ∈ (-1[,]1) → 𝑥 ≤ (cos‘0))
4844, 47jca 555 . . . . . 6 (𝑥 ∈ (-1[,]1) → ((cos‘π) ≤ 𝑥𝑥 ≤ (cos‘0)))
4928, 29, 33, 35, 36, 38, 41, 48ivthle2 23426 . . . . 5 (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥)
50 eqcom 2767 . . . . . . 7 (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ((cos ↾ (0[,]π))‘𝑦) = 𝑥)
5120eqeq1d 2762 . . . . . . 7 (𝑦 ∈ (0[,]π) → (((cos ↾ (0[,]π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
5250, 51syl5bb 272 . . . . . 6 (𝑦 ∈ (0[,]π) → (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
5352rexbiia 3178 . . . . 5 (∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥)
5449, 53sylibr 224 . . . 4 (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦))
5554rgen 3060 . . 3 𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)
56 dffo3 6537 . . 3 ((cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)))
5719, 55, 56mpbir2an 993 . 2 (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1)
58 df-f1o 6056 . 2 ((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ∧ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1)))
5927, 57, 58mpbir2an 993 1 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  wss 3715   class class class wbr 4804  cres 5268   Fn wfn 6044  wf 6045  1-1wf1 6046  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   < clt 10266  cle 10267  -cneg 10459  [,]cicc 12371  cosccos 14994  πcpi 14996  cnccncf 22880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830
This theorem is referenced by:  resinf1o  24481
  Copyright terms: Public domain W3C validator