MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recreclt Structured version   Visualization version   GIF version

Theorem recreclt 10960
Description: Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 10905 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
2 gt0ne0 10531 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3 rereccl 10781 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
42, 3syldan 486 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
5 1re 10077 . . . . 5 1 ∈ ℝ
6 ltaddpos 10556 . . . . 5 (((1 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
74, 5, 6sylancl 695 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
81, 7mpbid 222 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (1 + (1 / 𝐴)))
9 readdcl 10057 . . . . 5 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈ ℝ)
105, 4, 9sylancr 696 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 + (1 / 𝐴)) ∈ ℝ)
11 0lt1 10588 . . . . . 6 0 < 1
12 0re 10078 . . . . . . . 8 0 ∈ ℝ
13 lttr 10152 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1412, 5, 13mp3an12 1454 . . . . . . 7 ((1 + (1 / 𝐴)) ∈ ℝ → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1510, 14syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1611, 15mpani 712 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) → 0 < (1 + (1 / 𝐴))))
178, 16mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 + (1 / 𝐴)))
18 recgt1 10957 . . . 4 (((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴))) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
1910, 17, 18syl2anc 694 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
208, 19mpbid 222 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 1)
21 ltaddpos 10556 . . . . . 6 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
225, 4, 21sylancr 696 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
2311, 22mpbii 223 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1))
244recnd 10106 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
25 ax-1cn 10032 . . . . 5 1 ∈ ℂ
26 addcom 10260 . . . . 5 (((1 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2724, 25, 26sylancl 695 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2823, 27breqtrd 4711 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴)))
29 simpl 472 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
30 simpr 476 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
31 ltrec1 10948 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴)))) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3229, 30, 10, 17, 31syl22anc 1367 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3328, 32mpbid 222 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 𝐴)
3420, 33jca 553 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112   / cdiv 10722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator