![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recvs | Structured version Visualization version GIF version |
Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
Ref | Expression |
---|---|
recvs.r | ⊢ 𝑅 = (ringLMod‘ℝfld) |
Ref | Expression |
---|---|
recvs | ⊢ 𝑅 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 20013 | . . . . . 6 ⊢ ℝfld ∈ Field | |
2 | fldidom 19353 | . . . . . . 7 ⊢ (ℝfld ∈ Field → ℝfld ∈ IDomn) | |
3 | isidom 19352 | . . . . . . . 8 ⊢ (ℝfld ∈ IDomn ↔ (ℝfld ∈ CRing ∧ ℝfld ∈ Domn)) | |
4 | crngring 18604 | . . . . . . . . 9 ⊢ (ℝfld ∈ CRing → ℝfld ∈ Ring) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((ℝfld ∈ CRing ∧ ℝfld ∈ Domn) → ℝfld ∈ Ring) |
6 | 3, 5 | sylbi 207 | . . . . . . 7 ⊢ (ℝfld ∈ IDomn → ℝfld ∈ Ring) |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld ∈ Ring) |
8 | 1, 7 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
9 | rlmlmod 19253 | . . . . 5 ⊢ (ℝfld ∈ Ring → (ringLMod‘ℝfld) ∈ LMod) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℝfld) ∈ LMod |
11 | rlmsca 19248 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld = (Scalar‘(ringLMod‘ℝfld))) | |
12 | 1, 11 | ax-mp 5 | . . . . 5 ⊢ ℝfld = (Scalar‘(ringLMod‘ℝfld)) |
13 | df-refld 19999 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
14 | 12, 13 | eqtr3i 2675 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) |
15 | resubdrg 20002 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
16 | 15 | simpli 473 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
17 | eqid 2651 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (Scalar‘(ringLMod‘ℝfld)) | |
18 | 17 | isclmi 22923 | . . . 4 ⊢ (((ringLMod‘ℝfld) ∈ LMod ∧ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) ∧ ℝ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℝfld) ∈ ℂMod) |
19 | 10, 14, 16, 18 | mp3an 1464 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ ℂMod |
20 | 15 | simpri 477 | . . . 4 ⊢ ℝfld ∈ DivRing |
21 | rlmlvec 19254 | . . . 4 ⊢ (ℝfld ∈ DivRing → (ringLMod‘ℝfld) ∈ LVec) | |
22 | 20, 21 | ax-mp 5 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ LVec |
23 | 19, 22 | elini 3830 | . 2 ⊢ (ringLMod‘ℝfld) ∈ (ℂMod ∩ LVec) |
24 | recvs.r | . 2 ⊢ 𝑅 = (ringLMod‘ℝfld) | |
25 | df-cvs 22970 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
26 | 23, 24, 25 | 3eltr4i 2743 | 1 ⊢ 𝑅 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 ↾s cress 15905 Scalarcsca 15991 Ringcrg 18593 CRingccrg 18594 DivRingcdr 18795 Fieldcfield 18796 SubRingcsubrg 18824 LModclmod 18911 LVecclvec 19150 ringLModcrglmod 19217 Domncdomn 19328 IDomncidom 19329 ℂfldccnfld 19794 ℝfldcrefld 19998 ℂModcclm 22908 ℂVecccvs 22969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-subg 17638 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-field 18798 df-subrg 18826 df-lmod 18913 df-lvec 19151 df-sra 19220 df-rgmod 19221 df-nzr 19306 df-rlreg 19331 df-domn 19332 df-idom 19333 df-cnfld 19795 df-refld 19999 df-clm 22909 df-cvs 22970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |