MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reefcl Structured version   Visualization version   GIF version

Theorem reefcl 14811
Description: The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
reefcl (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)

Proof of Theorem reefcl
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recn 10023 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 efval 14804 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
4 nn0uz 11719 . . 3 0 = (ℤ‘0)
5 0zd 11386 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℤ)
6 eqid 2621 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76eftval 14801 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
87adantl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
9 reeftcl 14799 . . 3 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
106efcllem 14802 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
111, 10syl 17 . . 3 (𝐴 ∈ ℝ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
124, 5, 8, 9, 11isumrecl 14490 . 2 (𝐴 ∈ ℝ → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
133, 12eqeltrd 2700 1 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  cmpt 4727  dom cdm 5112  cfv 5886  (class class class)co 6647  cc 9931  cr 9932  0cc0 9933   + caddc 9936   / cdiv 10681  0cn0 11289  seqcseq 12796  cexp 12855  !cfa 13055  cli 14209  Σcsu 14410  expce 14786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-rp 11830  df-ico 12178  df-fz 12324  df-fzo 12462  df-fl 12588  df-seq 12797  df-exp 12856  df-fac 13056  df-hash 13113  df-shft 13801  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-limsup 14196  df-clim 14213  df-rlim 14214  df-sum 14411  df-ef 14792
This theorem is referenced by:  reefcld  14812  ere  14813  efgt0  14827  rpefcl  14828  eflt  14841  efle  14842  reef11  14843  resinhcl  14880  tanhlt1  14884  reeff1olem  24194  birthday  24675  cxploglim  24698  iexpire  31607
  Copyright terms: Public domain W3C validator