MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1olem Structured version   Visualization version   GIF version

Theorem reeff1olem 23921
Description: Lemma for reeff1o 23922. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1olem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ioossicc 12086 . . 3 (0(,)𝑈) ⊆ (0[,]𝑈)
2 0re 9896 . . . . 5 0 ∈ ℝ
3 iccssre 12082 . . . . 5 ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ)
42, 3mpan 701 . . . 4 (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ)
54adantr 479 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ)
61, 5syl5ss 3578 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ)
72a1i 11 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ)
8 simpl 471 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ)
9 0lt1 10399 . . . . 5 0 < 1
10 1re 9895 . . . . . 6 1 ∈ ℝ
11 lttr 9965 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
122, 10, 11mp3an12 1405 . . . . 5 (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
139, 12mpani 707 . . . 4 (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈))
1413imp 443 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈)
15 ax-resscn 9849 . . . 4 ℝ ⊆ ℂ
165, 15syl6ss 3579 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ)
17 efcn 23918 . . . 4 exp ∈ (ℂ–cn→ℂ)
1817a1i 11 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ))
19 ssel2 3562 . . . . 5 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ)
2019reefcld 14603 . . . 4 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
215, 20sylan 486 . . 3 (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
22 ef0 14606 . . . . 5 (exp‘0) = 1
23 simpr 475 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈)
2422, 23syl5eqbr 4612 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈)
25 peano2re 10060 . . . . . 6 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
2625adantr 479 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ)
27 reefcl 14602 . . . . . 6 (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ)
2827adantr 479 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ)
29 ltp1 10710 . . . . . 6 (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1))
3029adantr 479 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1))
318recnd 9924 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ)
32 ax-1cn 9850 . . . . . . 7 1 ∈ ℂ
33 addcom 10073 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈))
3431, 32, 33sylancl 692 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈))
358, 14elrpd 11701 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+)
36 efgt1p 14630 . . . . . . 7 (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈))
3735, 36syl 17 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈))
3834, 37eqbrtrd 4599 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈))
398, 26, 28, 30, 38lttrd 10049 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈))
4024, 39jca 552 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈𝑈 < (exp‘𝑈)))
417, 8, 8, 14, 16, 18, 21, 40ivth 22947 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈)
42 ssrexv 3629 . 2 ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈))
436, 41, 42sylc 62 1 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wrex 2896  wss 3539   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  +crp 11664  (,)cioo 12002  [,]cicc 12005  expce 14577  cnccncf 22418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354
This theorem is referenced by:  reeff1o  23922
  Copyright terms: Public domain W3C validator