![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refdivmptfv | Structured version Visualization version GIF version |
Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.) |
Ref | Expression |
---|---|
refdivmptfv | ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ) | |
2 | ax-resscn 10205 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ) |
4 | 1, 3 | fssd 6218 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
5 | id 22 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ) | |
6 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ) |
7 | 5, 6 | fssd 6218 | . . . . 5 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ) |
8 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
9 | 4, 7, 8 | 3anim123i 1155 | . . . 4 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉)) |
10 | fdivmpt 42862 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
12 | 11 | adantr 472 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
13 | fveq2 6353 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
14 | fveq2 6353 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
15 | 13, 14 | oveq12d 6832 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
16 | 15 | adantl 473 | . 2 ⊢ ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
17 | simpr 479 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0)) | |
18 | ovexd 6844 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ V) | |
19 | 12, 16, 17, 18 | fvmptd 6451 | 1 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 supp csupp 7464 ℂcc 10146 ℝcr 10147 0cc0 10148 / cdiv 10896 /f cfdiv 42859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-supp 7465 df-fdiv 42860 |
This theorem is referenced by: elbigolo1 42879 |
Copyright terms: Public domain | W3C validator |