MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reftr Structured version   Visualization version   GIF version

Theorem reftr 21222
Description: Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
reftr ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴Ref𝐶)

Proof of Theorem reftr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . 4 𝐵 = 𝐵
2 eqid 2626 . . . 4 𝐶 = 𝐶
31, 2refbas 21218 . . 3 (𝐵Ref𝐶 𝐶 = 𝐵)
4 eqid 2626 . . . 4 𝐴 = 𝐴
54, 1refbas 21218 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
63, 5sylan9eqr 2682 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐶 = 𝐴)
7 refssex 21219 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
87ex 450 . . . . 5 (𝐴Ref𝐵 → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦))
98adantr 481 . . . 4 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦))
10 refssex 21219 . . . . . . 7 ((𝐵Ref𝐶𝑦𝐵) → ∃𝑧𝐶 𝑦𝑧)
1110ad2ant2lr 783 . . . . . 6 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → ∃𝑧𝐶 𝑦𝑧)
12 sstr2 3595 . . . . . . . 8 (𝑥𝑦 → (𝑦𝑧𝑥𝑧))
1312reximdv 3015 . . . . . . 7 (𝑥𝑦 → (∃𝑧𝐶 𝑦𝑧 → ∃𝑧𝐶 𝑥𝑧))
1413ad2antll 764 . . . . . 6 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → (∃𝑧𝐶 𝑦𝑧 → ∃𝑧𝐶 𝑥𝑧))
1511, 14mpd 15 . . . . 5 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → ∃𝑧𝐶 𝑥𝑧)
1615rexlimdvaa 3030 . . . 4 ((𝐴Ref𝐵𝐵Ref𝐶) → (∃𝑦𝐵 𝑥𝑦 → ∃𝑧𝐶 𝑥𝑧))
179, 16syld 47 . . 3 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝑥𝐴 → ∃𝑧𝐶 𝑥𝑧))
1817ralrimiv 2964 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → ∀𝑥𝐴𝑧𝐶 𝑥𝑧)
19 refrel 21216 . . . . 5 Rel Ref
2019brrelexi 5123 . . . 4 (𝐴Ref𝐵𝐴 ∈ V)
2120adantr 481 . . 3 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴 ∈ V)
224, 2isref 21217 . . 3 (𝐴 ∈ V → (𝐴Ref𝐶 ↔ ( 𝐶 = 𝐴 ∧ ∀𝑥𝐴𝑧𝐶 𝑥𝑧)))
2321, 22syl 17 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝐴Ref𝐶 ↔ ( 𝐶 = 𝐴 ∧ ∀𝑥𝐴𝑧𝐶 𝑥𝑧)))
246, 18, 23mpbir2and 956 1 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴Ref𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  Vcvv 3191  wss 3560   cuni 4407   class class class wbr 4618  Refcref 21210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-ref 21213
This theorem is referenced by:  refssfne  31987
  Copyright terms: Public domain W3C validator