MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem Structured version   Visualization version   GIF version

Theorem regr1lem 22349
Description: Lemma for regr1 22360. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
regr1lem.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
regr1lem.3 (𝜑𝐽 ∈ Reg)
regr1lem.4 (𝜑𝐴𝑋)
regr1lem.5 (𝜑𝐵𝑋)
regr1lem.6 (𝜑𝑈𝐽)
regr1lem.7 (𝜑 → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
Assertion
Ref Expression
regr1lem (𝜑 → (𝐴𝑈𝐵𝑈))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐴   𝐵,𝑚,𝑛,𝑥,𝑦   𝑚,𝐽,𝑛,𝑥,𝑦   𝑚,𝐹,𝑛   𝑚,𝑋,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑈(𝑥,𝑦,𝑚,𝑛)   𝐹(𝑥,𝑦)

Proof of Theorem regr1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 regr1lem.3 . . . . 5 (𝜑𝐽 ∈ Reg)
21adantr 483 . . . 4 ((𝜑𝐴𝑈) → 𝐽 ∈ Reg)
3 regr1lem.6 . . . . 5 (𝜑𝑈𝐽)
43adantr 483 . . . 4 ((𝜑𝐴𝑈) → 𝑈𝐽)
5 simpr 487 . . . 4 ((𝜑𝐴𝑈) → 𝐴𝑈)
6 regsep 21944 . . . 4 ((𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))
72, 4, 5, 6syl3anc 1367 . . 3 ((𝜑𝐴𝑈) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))
8 regr1lem.7 . . . . 5 (𝜑 → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
98ad2antrr 724 . . . 4 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
10 regr1lem.2 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
1110ad3antrrr 728 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐽 ∈ (TopOn‘𝑋))
12 simplrl 775 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝑧𝐽)
13 kqval.2 . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
1413kqopn 22344 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
1511, 12, 14syl2anc 586 . . . . . 6 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐹𝑧) ∈ (KQ‘𝐽))
16 toponuni 21524 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1711, 16syl 17 . . . . . . . . 9 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝑋 = 𝐽)
1817difeq1d 4100 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) = ( 𝐽 ∖ ((cls‘𝐽)‘𝑧)))
19 topontop 21523 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2011, 19syl 17 . . . . . . . . . 10 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐽 ∈ Top)
21 elssuni 4870 . . . . . . . . . . 11 (𝑧𝐽𝑧 𝐽)
2212, 21syl 17 . . . . . . . . . 10 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝑧 𝐽)
23 eqid 2823 . . . . . . . . . . 11 𝐽 = 𝐽
2423clscld 21657 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧 𝐽) → ((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽))
2520, 22, 24syl2anc 586 . . . . . . . . 9 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽))
2623cldopn 21641 . . . . . . . . 9 (((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽)
2725, 26syl 17 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽)
2818, 27eqeltrd 2915 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽)
2913kqopn 22344 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽))
3011, 28, 29syl2anc 586 . . . . . 6 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽))
31 simprrl 779 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → 𝐴𝑧)
3231adantr 483 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐴𝑧)
33 regr1lem.4 . . . . . . . . 9 (𝜑𝐴𝑋)
3433ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐴𝑋)
3513kqfvima 22340 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽𝐴𝑋) → (𝐴𝑧 ↔ (𝐹𝐴) ∈ (𝐹𝑧)))
3611, 12, 34, 35syl3anc 1367 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐴𝑧 ↔ (𝐹𝐴) ∈ (𝐹𝑧)))
3732, 36mpbid 234 . . . . . 6 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐹𝐴) ∈ (𝐹𝑧))
38 regr1lem.5 . . . . . . . . 9 (𝜑𝐵𝑋)
3938ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐵𝑋)
40 simprrr 780 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → ((cls‘𝐽)‘𝑧) ⊆ 𝑈)
4140sseld 3968 . . . . . . . . 9 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → (𝐵 ∈ ((cls‘𝐽)‘𝑧) → 𝐵𝑈))
4241con3dimp 411 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ¬ 𝐵 ∈ ((cls‘𝐽)‘𝑧))
4339, 42eldifd 3949 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))
4413kqfvima 22340 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽𝐵𝑋) → (𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ↔ (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))))
4511, 28, 39, 44syl3anc 1367 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ↔ (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))))
4643, 45mpbid 234 . . . . . 6 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))))
4723sscls 21666 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧 𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
4820, 22, 47syl2anc 586 . . . . . . . . 9 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
4948sscond 4120 . . . . . . . 8 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ⊆ (𝑋𝑧))
50 imass2 5967 . . . . . . . 8 ((𝑋 ∖ ((cls‘𝐽)‘𝑧)) ⊆ (𝑋𝑧) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ⊆ (𝐹 “ (𝑋𝑧)))
51 sslin 4213 . . . . . . . 8 ((𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ⊆ (𝐹 “ (𝑋𝑧)) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))))
5249, 50, 513syl 18 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))))
5313kqdisj 22342 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))) = ∅)
5411, 12, 53syl2anc 586 . . . . . . 7 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))) = ∅)
55 sseq0 4355 . . . . . . 7 ((((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))) ∧ ((𝐹𝑧) ∩ (𝐹 “ (𝑋𝑧))) = ∅) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)
5652, 54, 55syl2anc 586 . . . . . 6 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)
57 eleq2 2903 . . . . . . . 8 (𝑚 = (𝐹𝑧) → ((𝐹𝐴) ∈ 𝑚 ↔ (𝐹𝐴) ∈ (𝐹𝑧)))
58 ineq1 4183 . . . . . . . . 9 (𝑚 = (𝐹𝑧) → (𝑚𝑛) = ((𝐹𝑧) ∩ 𝑛))
5958eqeq1d 2825 . . . . . . . 8 (𝑚 = (𝐹𝑧) → ((𝑚𝑛) = ∅ ↔ ((𝐹𝑧) ∩ 𝑛) = ∅))
6057, 593anbi13d 1434 . . . . . . 7 (𝑚 = (𝐹𝑧) → (((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝐴) ∈ (𝐹𝑧) ∧ (𝐹𝐵) ∈ 𝑛 ∧ ((𝐹𝑧) ∩ 𝑛) = ∅)))
61 eleq2 2903 . . . . . . . 8 (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → ((𝐹𝐵) ∈ 𝑛 ↔ (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))))
62 ineq2 4185 . . . . . . . . 9 (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → ((𝐹𝑧) ∩ 𝑛) = ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))))
6362eqeq1d 2825 . . . . . . . 8 (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → (((𝐹𝑧) ∩ 𝑛) = ∅ ↔ ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅))
6461, 633anbi23d 1435 . . . . . . 7 (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → (((𝐹𝐴) ∈ (𝐹𝑧) ∧ (𝐹𝐵) ∈ 𝑛 ∧ ((𝐹𝑧) ∩ 𝑛) = ∅) ↔ ((𝐹𝐴) ∈ (𝐹𝑧) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∧ ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)))
6560, 64rspc2ev 3637 . . . . . 6 (((𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽) ∧ ((𝐹𝐴) ∈ (𝐹𝑧) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∧ ((𝐹𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
6615, 30, 37, 46, 56, 65syl113anc 1378 . . . . 5 ((((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵𝑈) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
6766ex 415 . . . 4 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → (¬ 𝐵𝑈 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝐴) ∈ 𝑚 ∧ (𝐹𝐵) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
689, 67mt3d 150 . . 3 (((𝜑𝐴𝑈) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → 𝐵𝑈)
697, 68rexlimddv 3293 . 2 ((𝜑𝐴𝑈) → 𝐵𝑈)
7069ex 415 1 (𝜑 → (𝐴𝑈𝐵𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  cdif 3935  cin 3937  wss 3938  c0 4293   cuni 4840  cmpt 5148  cima 5560  cfv 6357  Topctop 21503  TopOnctopon 21520  Clsdccld 21626  clsccl 21628  Regcreg 21919  KQckq 22303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-qtop 16782  df-top 21504  df-topon 21521  df-cld 21629  df-cls 21631  df-reg 21926  df-kq 22304
This theorem is referenced by:  regr1lem2  22350
  Copyright terms: Public domain W3C validator