Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   GIF version

Theorem reheibor 35111
Description: Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
reheibor.3 𝑇 = (MetOpen‘𝑀)
reheibor.4 𝑈 = (topGen‘ran (,))
Assertion
Ref Expression
reheibor (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem reheibor
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8110 . . . 4 1o = {∅}
2 snfi 8588 . . . 4 {∅} ∈ Fin
31, 2eqeltri 2909 . . 3 1o ∈ Fin
4 imassrn 5934 . . . . 5 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
5 0ex 5203 . . . . . . . . . 10 ∅ ∈ V
6 eqid 2821 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
7 eqid 2821 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
86, 7ismrer1 35110 . . . . . . . . . 10 (∅ ∈ V → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅})))
95, 8ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
101fveq2i 6667 . . . . . . . . . 10 (ℝn‘1o) = (ℝn‘{∅})
1110oveq2i 7161 . . . . . . . . 9 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
129, 11eleqtrri 2912 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o))
136rexmet 23393 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
14 eqid 2821 . . . . . . . . . . 11 (ℝ ↑m 1o) = (ℝ ↑m 1o)
1514rrnmet 35101 . . . . . . . . . 10 (1o ∈ Fin → (ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)))
16 metxmet 22938 . . . . . . . . . 10 ((ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)) → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
173, 15, 16mp2b 10 . . . . . . . . 9 (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))
18 isismty 35073 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))))
1913, 17, 18mp2an 690 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧))))
2012, 19mpbi 232 . . . . . . 7 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))
2120simpli 486 . . . . . 6 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o)
22 f1of 6609 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o))
23 frn 6514 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o) → ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o))
2421, 22, 23mp2b 10 . . . . 5 ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o)
254, 24sstri 3975 . . . 4 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)
2625a1i 11 . . 3 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o))
27 eqid 2821 . . . 4 ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) = ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
28 eqid 2821 . . . 4 (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
29 eqid 2821 . . . 4 (MetOpen‘(ℝn‘1o)) = (MetOpen‘(ℝn‘1o))
3014, 27, 28, 29rrnheibor 35109 . . 3 ((1o ∈ Fin ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
313, 26, 30sylancr 589 . 2 (𝑌 ⊆ ℝ → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
32 reheibor.2 . . . . . . 7 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
33 cnxmet 23375 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
34 id 22 . . . . . . . . 9 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ)
35 ax-resscn 10588 . . . . . . . . 9 ℝ ⊆ ℂ
3634, 35sstrdi 3978 . . . . . . . 8 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ)
37 xmetres2 22965 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3833, 36, 37sylancr 589 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3932, 38eqeltrid 2917 . . . . . 6 (𝑌 ⊆ ℝ → 𝑀 ∈ (∞Met‘𝑌))
40 xmetres2 22965 . . . . . . 7 (((ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
4117, 26, 40sylancr 589 . . . . . 6 (𝑌 ⊆ ℝ → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
42 reheibor.3 . . . . . . 7 𝑇 = (MetOpen‘𝑀)
4342, 28ismtyhmeo 35077 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4439, 41, 43syl2anc 586 . . . . 5 (𝑌 ⊆ ℝ → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4513a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4617a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
4712a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)))
48 eqid 2821 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) = ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)
49 eqid 2821 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌))
5048, 49, 27ismtyres 35080 . . . . . . 7 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ∧ 𝑌 ⊆ ℝ)) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5145, 46, 47, 34, 50syl22anc 836 . . . . . 6 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
52 xpss12 5564 . . . . . . . . . 10 ((𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ) → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5352anidms 569 . . . . . . . . 9 (𝑌 ⊆ ℝ → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5453resabs1d 5878 . . . . . . . 8 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = ((abs ∘ − ) ↾ (𝑌 × 𝑌)))
5554, 32syl6eqr 2874 . . . . . . 7 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = 𝑀)
5655oveq1d 7165 . . . . . 6 (𝑌 ⊆ ℝ → ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5751, 56eleqtrd 2915 . . . . 5 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5844, 57sseldd 3967 . . . 4 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
59 hmphi 22379 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
6058, 59syl 17 . . 3 (𝑌 ⊆ ℝ → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
61 cmphmph 22390 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
62 hmphsym 22384 . . . . 5 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇)
63 cmphmph 22390 . . . . 5 ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇 → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6462, 63syl 17 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6561, 64impbid 214 . . 3 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
6660, 65syl 17 . 2 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
67 reheibor.4 . . . . . . . 8 𝑈 = (topGen‘ran (,))
68 eqid 2821 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
696, 68tgioo 23398 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7067, 69eqtri 2844 . . . . . . 7 𝑈 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7170, 29ismtyhmeo 35077 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o))))
7213, 17, 71mp2an 690 . . . . 5 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
7372, 12sselii 3963 . . . 4 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
74 retopon 23366 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
7567, 74eqeltri 2909 . . . . . 6 𝑈 ∈ (TopOn‘ℝ)
7675toponunii 21518 . . . . 5 ℝ = 𝑈
7776hmeocld 22369 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o))) ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
7873, 34, 77sylancr 589 . . 3 (𝑌 ⊆ ℝ → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
79 ismtybnd 35079 . . . 4 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8039, 41, 57, 79syl3anc 1367 . . 3 (𝑌 ⊆ ℝ → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8178, 80anbi12d 632 . 2 (𝑌 ⊆ ℝ → ((𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)) ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
8231, 66, 813bitr4d 313 1 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  c0 4290  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  ran crn 5550  cres 5551  cima 5552  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  1oc1o 8089  m cmap 8400  Fincfn 8503  cc 10529  cr 10530  cmin 10864  (,)cioo 12732  abscabs 14587  topGenctg 16705  ∞Metcxmet 20524  Metcmet 20525  MetOpencmopn 20529  TopOnctopon 21512  Clsdccld 21618  Compccmp 21988  Homeochmeo 22355  chmph 22356  Bndcbnd 35039   Ismty cismty 35070  ncrrn 35097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-topgen 16711  df-prds 16715  df-pws 16717  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cn 21829  df-lm 21831  df-haus 21917  df-cmp 21989  df-hmeo 22357  df-hmph 22358  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-cfil 23852  df-cau 23853  df-cmet 23854  df-totbnd 35040  df-bnd 35051  df-ismty 35071  df-rrn 35098
This theorem is referenced by:  icccmpALT  35113
  Copyright terms: Public domain W3C validator