MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdsmm Structured version   Visualization version   GIF version

Theorem reldmdsmm 20879
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Assertion
Ref Expression
reldmdsmm Rel dom ⊕m

Proof of Theorem reldmdsmm
Dummy variables 𝑠 𝑟 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dsmm 20878 . 2 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
21reldmmpo 7287 1 Rel dom ⊕m
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  dom cdm 5557  Rel wrel 5562  cfv 6357  (class class class)co 7158  Xcixp 8463  Fincfn 8511  Basecbs 16485  s cress 16486  0gc0g 16715  Xscprds 16721  m cdsmm 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-dm 5567  df-oprab 7162  df-mpo 7163  df-dsmm 20878
This theorem is referenced by:  dsmmval  20880  dsmmval2  20882
  Copyright terms: Public domain W3C validator