![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmap | Structured version Visualization version GIF version |
Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
reldmmap | ⊢ Rel dom ↑𝑚 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 7901 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | 1 | reldmmpt2 6813 | 1 ⊢ Rel dom ↑𝑚 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2637 Vcvv 3231 dom cdm 5143 Rel wrel 5148 ⟶wf 5922 ↑𝑚 cmap 7899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dm 5153 df-oprab 6694 df-mpt2 6695 df-map 7901 |
This theorem is referenced by: mapdom2 8172 smatrcl 29990 mapco2g 37594 |
Copyright terms: Public domain | W3C validator |