MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpt2 Structured version   Visualization version   GIF version

Theorem reldmmpt2 6813
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
reldmmpt2 Rel dom 𝐹
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem reldmmpt2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 6787 . 2 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
3 df-mpt2 6695 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
42, 3eqtri 2673 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
54dmeqi 5357 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
65releqi 5236 . 2 (Rel dom 𝐹 ↔ Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
71, 6mpbir 221 1 Rel dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wcel 2030  dom cdm 5143  Rel wrel 5148  {coprab 6691  cmpt2 6692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-dm 5153  df-oprab 6694  df-mpt2 6695
This theorem is referenced by:  reldmmap  7908  reldmsets  15933  reldmress  15973  reldmprds  16156  gsum0  17325  reldmghm  17706  oppglsm  18103  reldmdprd  18442  reldmlmhm  19073  reldmpsr  19409  reldmmpl  19475  reldmopsr  19521  reldmevls  19565  vr1val  19610  reldmevls1  19730  evl1fval  19740  zrhval  19904  reldmdsmm  20125  frlmrcl  20149  matbas0pc  20263  mdetfval  20440  madufval  20491  qtopres  21549  fgabs  21730  reldmtng  22489  reldmnghm  22563  reldmnmhm  22564  dvbsss  23711  reldmmdeg  23862  nbgrprc0  26271  wwlksn  26785  clwwlknOLD  26986  reldmresv  29954  bj-restsnid  33165  mzpmfp  37627  brovmptimex  38642
  Copyright terms: Public domain W3C validator