MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmopsr Structured version   Visualization version   GIF version

Theorem reldmopsr 19454
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
reldmopsr Rel dom ordPwSer

Proof of Theorem reldmopsr
Dummy variables 𝑟 𝑖 𝑝 𝑠 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-opsr 19341 . 2 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
21reldmmpt2 6756 1 Rel dom ordPwSer
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wcel 1988  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  [wsbc 3429  csb 3526  wss 3567  𝒫 cpw 4149  {cpr 4170  cop 4174   class class class wbr 4644  {copab 4703  cmpt 4720   × cxp 5102  ccnv 5103  dom cdm 5104  cima 5107  Rel wrel 5109  cfv 5876  (class class class)co 6635  𝑚 cmap 7842  Fincfn 7940  cn 11005  0cn0 11277  ndxcnx 15835   sSet csts 15836  Basecbs 15838  lecple 15929  ltcplt 16922   mPwSer cmps 19332   <bag cltb 19335   ordPwSer copws 19336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-dm 5114  df-oprab 6639  df-mpt2 6640  df-opsr 19341
This theorem is referenced by:  opsrle  19456  opsrbaslem  19458  opsrbaslemOLD  19459  psr1val  19537
  Copyright terms: Public domain W3C validator