MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmprds Structured version   Visualization version   GIF version

Theorem reldmprds 16232
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Assertion
Ref Expression
reldmprds Rel dom Xs

Proof of Theorem reldmprds
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑠 𝑟 𝑥 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prds 16231 . 2 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
21reldmmpt2 6888 1 Rel dom Xs
Colors of variables: wff setvar class
Syntax hints:  wa 383  wral 3014  Vcvv 3304  csb 3639  cun 3678  wss 3680  {csn 4285  {cpr 4287  {ctp 4289  cop 4291   class class class wbr 4760  {copab 4820  cmpt 4837   × cxp 5216  dom cdm 5218  ran crn 5219  ccom 5222  Rel wrel 5223  cfv 6001  (class class class)co 6765  cmpt2 6767  1st c1st 7283  2nd c2nd 7284  Xcixp 8025  supcsup 8462  0cc0 10049  *cxr 10186   < clt 10187  ndxcnx 15977  Basecbs 15980  +gcplusg 16064  .rcmulr 16065  Scalarcsca 16067   ·𝑠 cvsca 16068  ·𝑖cip 16069  TopSetcts 16070  lecple 16071  distcds 16073  Hom chom 16075  compcco 16076  TopOpenctopn 16205  tcpt 16222   Σg cgsu 16224  Xscprds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-br 4761  df-opab 4821  df-xp 5224  df-rel 5225  df-dm 5228  df-oprab 6769  df-mpt2 6770  df-prds 16231
This theorem is referenced by:  dsmmval  20201  dsmmval2  20203  dsmmbas2  20204  dsmmfi  20205
  Copyright terms: Public domain W3C validator