MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Visualization version   GIF version

Theorem reldmtpos 7894
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5203 . . . . 5 ∅ ∈ V
21eldm 5763 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 brtpos0 7893 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
43elv 3499 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
5 0nelrel0 5606 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
6 vex 3497 . . . . . . . 8 𝑦 ∈ V
71, 6breldm 5771 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
85, 7nsyl3 140 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
94, 8sylbir 237 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
109exlimiv 1927 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
112, 10sylbi 219 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1211con2i 141 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
13 vex 3497 . . . . . 6 𝑥 ∈ V
1413eldm 5763 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
15 relcnv 5961 . . . . . . . . . . 11 Rel dom 𝐹
16 df-rel 5556 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
1715, 16mpbi 232 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
1817sseli 3962 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
1918a1i 11 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
20 elsni 4577 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2120breq1d 5068 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
221, 6breldm 5771 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2322pm2.24d 154 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
244, 23sylbi 219 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2521, 24syl6bi 255 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
2625com3l 89 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
2726impcom 410 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
28 brtpos2 7892 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
296, 28ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3029simplbi 500 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
31 elun 4124 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3230, 31sylib 220 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3332adantl 484 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3419, 27, 33mpjaod 856 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3534ex 415 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3635exlimdv 1930 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3714, 36syl5bi 244 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
3837ssrdv 3972 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
39 df-rel 5556 . . 3 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
4038, 39sylibr 236 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4112, 40impbii 211 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wex 1776  wcel 2110  Vcvv 3494  cun 3933  wss 3935  c0 4290  {csn 4560   cuni 4831   class class class wbr 5058   × cxp 5547  ccnv 5548  dom cdm 5549  Rel wrel 5554  tpos ctpos 7885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-tpos 7886
This theorem is referenced by:  dmtpos  7898
  Copyright terms: Public domain W3C validator