MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrni Structured version   Visualization version   GIF version

Theorem relelrni 5271
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1 Rel 𝑅
Assertion
Ref Expression
relelrni (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)

Proof of Theorem relelrni
StepHypRef Expression
1 releldm.1 . 2 Rel 𝑅
2 relelrn 5267 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
31, 2mpan 701 1 (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1976   class class class wbr 4577  ran crn 5029  Rel wrel 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-xp 5034  df-rel 5035  df-cnv 5036  df-dm 5038  df-rn 5039
This theorem is referenced by:  fpwwe2lem12  9319  lern  16994  brfvrcld2  36806
  Copyright terms: Public domain W3C validator